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ABSTRACT

A method for the linear polynomial (polygonal) approximation of continuous activity 

resource consumption (duration) distributions of stochastic project management networks 

is developed, derived from the spline approximations used in numerical differentiation and 

integration. It is the first new method for network approximation and reduction to be 

advanced since discretization, which was the basis for all previously developed algorithms. 

The method is successfully mated with three network reduction approaches - arc 

duplication, sequential approximation, and a heuristic for identifying the K  most critical 

paths - to form the members of a new family of Polygonal Approximation and Reduction 

Techniques (PART). The development of a PART algorithm using “independent multiple 

arcs” (dual arcs) is the first successful implementation of an arc-duplication reduction 

method. Collectively, PART algorithms constitute an analytic reduction capability which is 

operative across the entire range of project management networks.

Algorithm validation is conducted within a design-of-experiments framework, which 

has not previously been employed in this context. Compared to other existing 

discretization-based methods, PART algorithms are demonstrated to be as accurate or more 

accurate in the characterization of the throughput distribution function. Accuracy is 

observed to be a function of network size, as driven by the number of activities much more 

strongly than the number of nodes, how great a challenge the activity distribution functions 

present to series-parallel reduction operations based on the polygonal approximation, and 

the number o f partition classes. PART algorithms are shown to execute an order of 

magnitude faster than their competitors. Polygonal approximation and associated PART 

algorithms represent a new and innovative concept in the analytic arsenal aimed at 

stochastic project management networks. They have the potential to put the power of 

network management into the hands of anyone in possession of a desktop computing 

capability. In this research, they demonstrate their worthiness for continued development.
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GLOSSARY

Activity resource consumption. The amount of a specified resource required to complete an 
activity, or event, in an activity network; the resource consumption required to transverse 
an arc between two nodes in an activity network. When the resource is time, the time 
required to complete an activity is referred to as either the activity completion time or the arc 
passage time.

Autocorrelation. A phenomenon usually observed in time-series data; the effect of the 
correlation (association) of a piece of data at time (t) with another piece of data at time 
(t+k).

Convolution. The additive combination of two or more probability distributions.

Equivalent arc. An arc resulting from the combination of two or more arcs in either series 
or parallel to a single arc.

Event A well-defined occurrence in time by which all preceding (predecessor) activities 
have terminated and at which all subsequent (successor) activities are initiated (see Node).

False steady state. The apparent but erroneous appearance of a steady state (see Steady 
state).

Network/Activitv network (ANY A graphical representation of the activities and the 
precedence relationships among the activities required to complete a project.

• Acyclic. directed/All-AND node network. An activity network with only AND 
nodes (see AND node).

• Deterministic activity network (DAN'). An acyclic, directed activity network with 
only constant (single, fixed value) activity resource consumption distributions.

• Generalized activity network (GAN). An activity network with both stochastic 
(probabilistic) activity resource consumption distributions and probabilistic 
branching (see Probabilistic node).

• Mixed distribution network. An activity network with activity resource 
consumption distributions not limited to a single type of frequency/probability 
distribution.

• Probabilistic activity network ('PAN). An acyclic, directed activity network with 
stochastic (probabilistic) activity resource consumption distributions.

• Single distribution network. An activity network with activity resource 
consumption distributions limited to a single type of frequency/probability 
distribution.

xiv
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Node. A point in a network at which all predecessor activities terminate and all successor 
activities are initiated.

• AND node. A node:
•• realized only when all its predecessor activities terminating at the node are 

completed, and
•• all of whose successor activities emanating from the node are initiated when 

the node is realized.
• Probabilistic node. A node:

•• realized when only one (or more) of its predecessor activities is (are) 
completed (probabilistic input), and/or 

•• one (or more) of whose successor activities is (are) initiated when the node is 
realized in accordance with specified probabilities (probabilistic output).

• Realized node. A node, all of whose required predecessor activities have been
completed.

• Sink node. The last node in the network, representing the completion of the
project

• Source node. The first node in the network, representing the start of the project.

Piecewise polygonal approximation. The approximation of a curvilinear function by a 
piecewise polygonal function, defined on intervals within its domain by straight line 
segments.

Parallel arc set A multiple arc set which connects two nodes, A and B, such that all arcs 
emanating from node A terminate at node B.

Separable network. A network which can be decomposed into subnetworks, each of 
which is either a parallel arc set or a series arc set; a network which can be reduced by 
successive applications of series/parallel reduction operations to an equivalent network with 
a single activity between source and sink nodes.

Series arc set. A multiple arc set in which only a single arc connects two successive nodes.

Steady State. A condition attained in a simulation when the process exhibits a stationary 
behavior as characterized by its parameters.

Stochastic (probabilistic! activity resource consumption. An activity resource consumption 
which behaves as a random variable, with a specified frequency/probability distribution, as 
opposed to a deterministic activity resource consumption whose value is constant

xv
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CHAPTER 1 

INTRODUCTION

Every project, whether large or small, requires a plan, a schedule, and a system of 

control. The plan specifies the objectives erf the project and outlines the actions required to 

reach those objectives. The schedule translates the plan into specific assignments, 

indicating when each activity must be completed. The system of control assures that the 

assignments are carried out on schedule to reach the desired objectives (American Society 

of Tool and Manufacturing Engineers, 1967). One method of accomplishing these 

functions is through the use of an activity/project management network. The most common 

concept of a network display is that of a graphical representation of the relationships among 

various events, the occurrences in time at which activities start and are completed, 

involving directed arcs representing the activities and nodes representing the events (Moder 

and Phillips, 1964). A typical activity network is shown in Figure 1.

1.1 Role of Networks in Project Management

The principal benefit derived from network use is an increase in the manager's ability to 

control a project, because the network displays all the component interrelationships 

involved in the accomplishment of the project As projects become larger and more 

complex, traditional management techniques tend to overload the manager with 

information. Network analysis is an attempt to ease this information overload and enable 

the manager to exercise some real control over the events for which he is responsible. 

Network analysis allows him to manage events, rather than permitting events to manage 

him. By defining specific priorities and utilizing resource consumption analysis and 

resource leveling before the project is placed into motion, the manager is able to see and 

comprehend intricate interrelationships that traditional project management techniques will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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Figure 1. A typical activity network.
[Adapted from Whitehouse (1973)]

not allow (Battersby, 1970). Idealistically, every project could be accomplished by 

network management. In reality, this is not the case, since there have been many problems 

associated with the use of networks (Welsh, 1965). This research is concerned with two 

of these problems:

(1) the determination of the activity resource consumption distribution through an 

activity/project management network (the throughput distribution), and

(2) the development of information which will be useful to the managers of projects 

whose networks have large numbers of nodes and activities without the 

determination of the throughput distribution.

Such resources typically consumed by activities include, principally, time, and also money, 

materials, personnel, and equipment.
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1.2 Types of Networks

It is the concept of precedence among events, occurring naturally because of 

technological and other considerations, that distinguishes activity networks from other 

established models for the planning, scheduling, and controlling of activities, such as the 

Gantt chart and its varieties. An activity network is just a graphical representation of the 

activities and the precedence relationships among the activities which are required to 

complete a project To accomplish each activity in a network requires the consumption of 

some amount(s) of one or more resources. In the development of network analysis 

techniques, the networks first studied were those whose activities all consume a single 

resource, usually thought of as time. Later, multiple resource consumption networks were 

studied as a separate problem class, usually modeled with the principal resource not subject 

to a capacity constraint and the other resources capacity-constrained.

If  the principal resource of an activity/project management network is time, the 

precedence relationships among the activities determine which activities must be completed 

before other activities can be started; alternatively stated, the precedence relationships 

determine the order of occurrence of the network’s events, the points in time at which all 

predecessor activities have been completed and, consequently, all successor activities may 

be started. No activity is permitted to loop back in an activity/project management network, 

since an activity cannot start at a later time and end at an earlier time; the network is said to 

be acyclic. Since each activity moves forward in time as it is being accomplished, it may be 

represented as a directed arc connecting its starting node and ending node (activity-on-arc 

representation). Hence, activity/project management networks are said to be acyclic, 

directed networks.

One of the first models for single resource networks, the Critical Path Method (CPM), 

assumes that the amounts of the resource consumed by all the network’s activities are 

known deterministically, while another of the early models, the Program Evaluation and
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Review Technique (PERT), assumes that the amounts of resource consumption are only 

known in a probabilistic sense. Later network analysis work expanded this original 

characterization into several directions and fundamentally novel approaches, to the point 

that it is now more convenient and precise to abandon the CPM-PERT categorization, while 

retaining the dichotomy between deterministic and stochastic (probabilistic) network 

models. Elmaghraby (1977) refers to the former as deterministic activity networks (DANs) 

and the latter as probabilistic activity networks (PANs).

All the activities in an activity/project management network must be completed in order 

for the project to be completed; that is to say, when each node in the network is realized 

upon the completion of all its predecessor activities, all its successor activities must be 

started. Since starting all of a node’s successor activities corresponds to the AND logical 

operator, acyclic, directed networks are also called all-AND node networks. When this 

restriction is relaxed and probabilistic branching is permitted at the network nodes, 

Elmaghraby (1977) refers to such networks as general activity networks (GANs). The 

Graphical Evaluation and Review Technique (GERTS) was developed for the analysis of 

GANs.

1.3 Analysis of Stochastic Networks

Three approaches have been undertaken for the solution of the problem of determining 

the throughput distribution of a stochastic activity/program management network:

(1) exact analytic solution,

(2) Monte Carlo simulation, and

(3) numerical approximation and reduction.

If the network is deterministic (a DAN), the problem is trivial; CPM provides the exact 

throughput. If the network is stochastic (a PAN), the problem is a more challenging one. 

Attempts to develop exact analytic solutions to stochastic activity networks have suggested

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5

infeasibilities. Monte Carlo simulation has been successfully implemented in commercial 

software packages, but has limited practical application because of the lengthy run times 

required for moderate-to-large size networks. Mainframe computers or workstations are 

needed to support network simulation software. Most recently, numerical approximation 

and reduction has emerged as an attractive solution approach for small-to-moderate size 

networks. A theoretical reduction process based on arc duplication has been developed 

(Martin, 1965; Dodin, 1985b and 1985c) but not practically implemented. The only 

successful implementations of these techniques have involved the discretization of 

continuous activity resource consumption distributions (Dodin, 1980 and 1985a; 

Hagstrom, 1990). To achieve acceptable accuracies in the description of the throughput 

distribution, densely packed discretizations of the activity resource consumption 

distributions must be employed, which result in high computer memory and run time 

requirements, even for moderate size networks. While these implementations can be 

supported on mainframe computers and workstations, they are incompatible with the 

current generation of personal computers.

When networks have large numbers of nodes and activities, the problem of how to 

develop information useful to project managers is no small task. Because of their high 

computer memory and run time requirements, determining network throughput 

distributions by either simulation or numerical approximation and reduction techniques is 

unattractive, and often unrealistic. Schonberger (1981) advised that the “complex, delay- 

prone segments” of a network should be the focus of managerial attention. Activity 

criticality and path criticality indices have been suggested as quantitative tools to identify the 

paths most likely to become critical in a network To estimate path criticality indices, 

simulation can be used to determine the relative frequency with which each path in a 

network is critical. However, in addition to long simulation run times for moderate-to- 

large networks, the task of uniquely identifying and recording which path is critical in each
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repetition of a simulation is now added. Ragsdale (1989) has concluded that this quickly 

becomes impractical for problems of “realistic size.” Dodin (1984) suggested a procedure 

for estimating the rankings of the path criticality indices for the K  most critical paths in a 

network based on stochastic dominance and demonstrated it using numerical approximation 

and reduction with discretization of continuous activity resource consumption distributions. 

The high computer memory and run time requirements associated with discretization have 

limited the application of Dodin’s method to mainframe computers and workstations.

1.4 Objectives of the Research

Numerical approximation and reduction techniques have recently emerged as attractive 

analytic tools to develop useful information for project managers from stochastic 

activity/project management networks. Although the work of Dodin (1980 and 1985a) and 

Hagstrom (1990) has shown that these techniques have the potential for widespread 

application in the project management arena, there has been a lack of research on the design 

of powerful, efficient techniques whose computational requirements are within the 

operating ranges of the computing capabilities of the vast majority of potential users.

The first objective of this research is to develop a new, novel, more capable, and more 

efficient numerical approximation method for continuous activity resource consumption 

distributions which, when combined with network reduction methods, could form 

algorithms whose accuracy, speed, and range of performance exceed those of existing 

procedures and whose computational requirements are within the operating envelopes of 

current desktop computing capabilities. The second objective is to develop three such 

network approximation and reduction algorithms, based on the new numerical 

approximation method combined with each of the leading network reduction methods: arc 

duplication, sequential approximation, and K  most critical paths. Collectively these 

algorithms, which approximate:
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(1) the throughput distribution for small-to-moderate size networks, and

(2) the K  most critical paths for large size networks and the associated 

activity and node criticality indices,

constitute an analytic reduction capability which is operative across the entire range of 

activity/project management networks. The new numerical approximation method and its 

three associated algorithms are validated in performance tests against “strongly 

randomized” networks generated in accordance with an experimental design. Comparisons 

of the performance of these algorithms with the reported performance of competing 

network approximation and reduction procedures are also presented.

1.5 Outline of the Research

In this chapter, activity/project management networks were introduced, and the 

problems o f providing useful information from the networks to project managers were 

discussed. Different approaches to network analysis were also briefly described. The 

remainder of this research is organized as follows:

Chapter 2 reviews the different approaches to the analysis of activity/project 

management networks.

Chapter 3 develops the new numerical approximation method for continuous activity 

resource consumption distributions and the algorithms which combine the new method 

with the three leading network reduction methods.

Chapter 4  validates the new method and its three associated netwoik approximation and 

reduction algorithms.

Chapter 5 summarizes this research and gives recommendations for further research in 

this area.
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CHAPTER 2 

LITERATURE REVIEW

2.1 Deterministic Networks

Prior to the recent development of techniques for determining throughput activity 

resource consumption distributions, network analysis necessitated the introduction of 

simplifying assumptions. One early, common assumption is that all activity resource 

consumption functions are constant. This assumption is often stated in terms of time as the 

principal resource of interest: all activity completion times are fixed (Martin, 1965). This 

assumption is not always valid, since an activity resource consumption function often 

behaves as a random variable. The assumption of constant activity resource consumption 

functions reduces the practical utility of project management networks by failing to consider 

the consequences due to their stochastic nature.

However, when all activity resource consumption functions are constant, or are 

assumed constant, the network is deterministic (a DAN) and can easily be reduced by the 

Critical Path Method (CPM). CPM was developed within the construction industry where 

previous experience in similar work can be used to predict time durations and cost within 

tight ranges (Whitehouse, 1973). There is no universally acceptable description of CPM 

because many practitioners have developed their own versions of cost models based on 

activity networks; of these, the most well-known is probably the system developed by the 

General Electric Company. MacCrimmon and Ryavec (1964), Battersby (1967), 

Whitehouse (1973), Elmaghraby (1977) et al. give complete discussions.

Since all activity resource consumption functions are constant, the length of each path 

through the network from the source node (start node) to the sink node (termination node) 

is just the sum of the resource consumption constants of the activities on the path. The path 

with the greatest, or largest, length is called the critical path; any increase in any of the
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activity durations on the critical path will result in a corresponding increase in the total time 

required to complete the project. The length of the critical path(s) of a deterministic project 

management network is the total project time. The earliest time node i can be realized, 

t((E) , and the latest time node i can be released and the project completed on time, t{{L), 

define the slack time, s t, of the node and the activity floats (slacks) of the activity av 

between node i and node j  and of length ttJ:

Slack time of node (event) i : s, -  t^L) -  /,(£ )

Total float of activity a{j: TF -  tj (L) -  tx (E) -  tu

Safety float of activity axj: SF « tj(L) -  tt(L) -  tXj

Free float of activity aXJ : FF -  tj(E) -  r, (E) -  ttJ

Interference float of activity atJ: IF -  maxfO./^E) -  f,(L) -  t t]]

A simple CPM network and its node slacks and activity floats are shown in Figure 2. The 

project completion time for this network is 15. Three activities possess positive float even 

though all the nodes have zero slack; for all activities, all four types of float are equal in this 

example.

2.2 Stochastic Networks

The first attempt to overcome the limited utility of constant activity resource 

consumption functions was the development of the Project Evaluation and Review 

Technique (PERT), in which all activity resource consumption functions are assumed to 

follow a single type of probability distribution and all source-to-sink paths through the 

network are assumed independent. There are three types of distributions used most 

frequently with PERT networks: beta, uniform, and normal. The beta distribution is the
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( 2 , 2 . 0 )

( 15 , 15,0 )

(0 , 0 ,0 )

( 7 ,7,0 )

Arc Float

( u r
(2 ,3 ) 0

(3 ,4 )

(1.3) 3
(1,4) 9
(2,4) 12

Activity floats S

(ti (E) ,  t, (L) ,  s , J

Legend

Figure 2. A CPM network with node slacks and activity floats. 
[Adapted from Elmaghraby (1977)]

most common single distribution used with PERT (Whitehouse, 1973). PERT uses three 

time estimates for each activity:

a , the optimistic time, which should have only a very low probability of occurring; 

m , the most likely time, the mode of the beta distribution; and

b , the pessimistic time, which also should have only a very low probability of 
occurring.

PERT then assumes that these three estimates can be used to describe a beta distribution for 

each activity duration, as shown in Figure 3. The expected time for an activity, te, the 

standard deviation, o,#, and the variance, Vt , are then computed as:

a + 4m+b
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‘  V 6  I
A simple PERT network and its activity parameters (a,m,b) are shown in Figure 4. To 

permit finding the mean, n , and the variance, o 2, of the earliest, TE, and latest, TL, node 

(event) times, PERT assumes that the individual activity durations are statistically 

independent. Then, the mean and variance of TE and TL are calculated under the further 

assumption that the path to a given node with the largest expected time will always 

dominate all the other paths to that node. Slack at a node is similarly defined as in CPM:

Slack at a node -  hTl -  nTt

The critical path is the path(s) with the longest expected time through the network. All 

nodes (events) which have zero slack appear on a critical path. The calculations for the 

PERT network in Figure 4 are shown in Table 1.

Once the expected earliest time of a node (event), n Tt, and its standard deviation, o Tt,

have been determined, probability theory can be used to calculate the chances of meeting a 

specific scheduled time, T, , for the node. By the central limit theorem, the earliest 

completion time of a node is assumed to be normally distributed with mean h Tb and 

standard deviation aTt. The probability of meeting the desired schedule time Ts is the area 

under the normal curve to the left of Ts , as shown in Figure 5. The random variable

T s - H t sZ -
° T C

is distributed as a standard normal, and hence the desired probability can be obtained 

directly from a standard normal table. Similarly, the probability of the project completion 

time falling between a lower value, Tt, and an upper value, Tu, can be computed.

The assumptions of a single type of distribution and independent source-to-sink paths 

have historically produced inaccuracies. MacCrimmon and Ryavec (1964) conducted an 

analytic study of the PERT assumptions and reported a Monte Carlo simulation of one
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/(O

ba m

Figure 3. A PERT beta distribution.
[Adapted from Whitehouse (1973)]

te = 5 te = 1
V. = 1 K, = 0

0 - 6 - 1 8- 1 - 12 - 5 -

7 - 7 - 7

2 - 8 - 1 43 - 3 - 3

Figure 4. A PERT network.
[Adapted from Whitehouse (1973)]
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Table 1. PERT Calculations.
[Adapted from Whitehouse (1973)]

E ven t
N o.

Earliest Time ( T e ) L a test Time (T l)

S lack

E xpected
Value

Mt e

Variance
E xpected

Value

P t l

Variance
o f L

1 0 0 0 10 0
2 5 1 5 9 0
3 6 1 6 9 0
4 3 0 5 4 2
5 13 10 13 0 0
6 20 10 20 0 0

Probability o f  
m eeting schedule

Figure 5. Calculation of the probability of meeting schedule. 
[Adapted from Whitehouse (1973)]
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selected PERT network using a beta distribution which evidenced a 34% error in estimation 

of the first moment (mean). This is typical of the errors experienced with PERT.

When the PERT assumption of a single type of distribution of activity resource 

consumption (duration) is relaxed and activities are permitted to take on arbitrary 

distributions, a project management network becomes a general stochastic project 

management network. Stochastic project management networks constitute a subclass of the 

class of stochastic networks. Stochastic networks have the following properties:

1. Each network consists of nodes denoting logical 
operations and transmittances.

2. A transmittance has associated with it a probability that 
the activity represented by the network will be 
performed.

3. Other parameters describe the activities which the 
transmittances represent. These parameters are usually 
additive, such as time or cost.

4. A realization of a network is a particular set of 
transmittances and nodes which describes the network 
for one experiment

5. If the time associated with a transmittance is a random 
variable, then a realization also implies that a fixed time 
has been selected for each transmittance.

(Whitehouse, 1973)

Various approaches to the solution of stochastic networks have been investigated. 

Eisner(1962) suggested the use of logical elements in PERT-type networks. Elmaghraby 

(1964, 1966) developed a notation for a multiparameter branch network and Eisner’s 

logical elements, and developed an algebra and coined the term generalized activity 

networks (GANs) to describe such networks. His algebra is limited to branches with 

constant times. Huggins (1957) and Howard (1960, 1964) employed flowgraphs to 

represent and analyze probabilistic systems. This early work led Pritsker, Happ, and 

Whitehouse (1966) to introduce the graphical evaluation and review technique (GERT), a 

procedure which combines the disciplines of flowgraph theory, moment generating 

functions, and PERT to obtain solutions to stochastic problems. In GERT networks,
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nodes are constructed from the combination of an input side and an output side. Three 

input sides are possible: EXCLUSIVE-OR, INCLUSIVE-OR, and AND; and two output 

sides: DETERMINISTIC and PROBABILISTIC. Project management (PERT-type) 

networks are stochastic (GERT-type) networks with all nodes of the AND- 

DETERMINISTIC combination, and as such are often referred to as stochastic 

(probabilistic) all-AND node networks. Using principles of flowgraph theory and moment 

generating functions, Pritsker and Happ (1966) demonstrated that the subclass of GERT 

networks consisting of all EXCLUSIVE-OR node networks can be exactly solved 

analytically.

2.3 Attempts at Analytic Solution of Stochastic Networks

2.3.1 Exact Solutions

Pritsker and Happ’s solution of the GERT networks subclass o f all EXCLUSIVE-OR 

node networks sparked efforts across a variety of fronts to find exact analytic solutions for 

other subclasses of GERT networks, in particular the stochastic all-AND node, project 

management networks. These attempts have either proven infeasible or met with only 

limited success. Pritsker (1966) suggested the use of Laplace transforms, which involve 

integrations in the complex plane. Although Whitehouse (1973) suggested several avenues 

by which the difficulties in manipulating Laplace transforms may be overcome, this 

approach has been abandoned, primarily because of the inability to develop a workable 

computer implementation. Their suggestion of the use of the Mellin transform instead has 

not been pursued, probably for the same reason. Frank (1969) prescribed a theoretical 

procedure for analytically determining the minimal throughput distribution which involves 

characteristic functions and requires transform inversions, but it has never been 

successfully implemented.
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Chames, Cooper and Thompson (1964) suggested that an exact expression of the 

probability density function of a network's throughput activity resource consumption could 

be obtained by deriving density functions conditioned on independent arcs which are 

common to more than one source-to-sink path. The first implementation of this idea was 

provided by Martin (1965), who presented an algorithm for determining the exact 

probability density function of throughput consumption for one specified subclass o f 

acyclic, directed (all-AND node) networks involving only uniformly distributed activity 

resource consumptions (times). Hartley and Wortham (1966) performed analysis on PERT 

networks in a method conceptually similar to Martin's, but their technique was limited to 

networks that could be reduced to an equivalent arc between source node and sink node by 

only series, parallel or Wheatstone Bridge reduction operations. Ringer (1966) extended 

the Hartley-Wortham approach by introducing procedures to reduce double Wheatstone 

Bridge and criss-cross subnetworks. Additionally, he suggested an approach for reducing 

"general PERT" networks (PANs); however, Si gal (1977) illustrated an inconsistency for 

one subnetwork class. Burt (1969) concluded analytic reduction of an arbitrary PAN to be 

intractable. Hopfinger and Steinhardt (1975, 1976) developed a theoretical, backward 

dynamic programming-like algorithm for the exact solution of a  PAN, but it has not been 

operationalized because of difficulties in evaluating associated multiple integrals. In the late 

1970s, the search for exact analytic solutions of stochastic project management networks 

was abandoned.

2.3.2 Approximation Solutions

The difficulty in developing any exact analytic solution of stochastic project 

management networks led investigators to resort to either approximating or bounding the 

activity resource consumption throughput distribution function. With Garman, Burt (1971) 

proposed a conditional Monte Carlo simulation approach, which Garman (1972) further
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developed. Their approach was based on an expression for the throughput distribution 

function which is conditioned on the common arcs; the expression is evaluated with Monte 

Carlo simulation by sampling on the common arcs. In an investigation of the stochastic 

shortest route problem, Sigal (1977) determined the minimum number of activities which 

must be conditioned upon with uniformly directed cut sets. In the calculation of path 

optimality indices, he overcame difficulties in evaluating associated multiple integrals only 

through the use of discretization approximations, after a manner discussed by Haber (in 

Hopfinger and Steinhardt, 1976). Elmaghraby (1977) critically reviewed these procedures. 

Sigal, Pritsker, and Solberg (1979) developed a conditional Monte Carlo simulation 

procedure similar to that of Burt and Garman. They used the path independent arcs of the 

maximum directed cutset to replace the common arcs in Burt and Garman’s procedure. 

O’Conners (1981) developed an analytic expression for the throughput distribution by 

conditioning on most of the common arcs, then using complete enumeration to evaluate the 

simplified expression; however, his procedure works only for networks all of whose 

activities have durations that have discrete densities.

All of these procedures are conceptually sound; but, with the exceptional of crude 

Monte Carlo simulation (VanSlyke, 1968), they are not practical. They are of limited value 

for all but small networks, because applying any of these procedures requires:

1. The identification of all the paths in the network, which 
can be a burdensome task.

2. Writing an analytic expression for the distribution 
function by conditioning on the common arcs (in the case 
of Burt and Garman), or on the arcs which are not in the 
maximum directed cutset (in the case of Sigal et al.), or 
on most of the common arcs (in the case o f O’Conners). 
It is not easy to develop such an expression for most 
non-trivial stochastic networks.

3. The analytical expression developed in 2. [above] is 
evaluated using complete enumeration (in the case of 
O’Conners), or using Monte Carlo sampling over the 
arcs conditioned upon.

(Dodin, 1985a)
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The difficulty in 3. [above] stems from the large number of arcs used in the conditional 

probability expression. The ratio of common (or arcs not in the maximum directed cutset) 

to the total number of arcs in the network approaches one as the network size increases. In 

Dodin (1985a), this ratio was reported greater than 0.9 for all strongly randomly generated 

networks with only 10 nodes and 15 arcs.

Dodin (1980, 1985a) developed the first practical procedure for approximating the 

throughput distribution based on the method of sequential approximation. An extension erf' 

the procedure determines the k most critical paths in a PERT-type network (Dodin, 1984). 

He also developed a theoretical reduction process based on arc duplication which converts 

an irreducible (nonseparable) network into an “equivalent” separable network, but has not 

provided a practical implementation (1985b, 1985c). The process extends Martin’s (1965) 

concept of “dual arcs” and relies on the existence of Garman’s a and b activities of 

irreducible networks, but Garman’s work (1972) is not credited. Hagstrom (1988) 

presented results for computational complexity for two problems associated with PERT 

networks whose activities have discrete time-cost distributions: computing a [single] value 

of the cumulative distribution function of project duration/cost, and computing the mean of 

this distribution. The former is #P-complete, the latter is at least as hard, and neither can be 

computed in time polynomial in the number of points in the range of the project 

duration/cost unless P=NP. She also developed a computationally demanding algorithm 

based on ordered recursive conditioning of the task durations; the technique is similar to 

pivoting (factoring, or backtracking) in reliability computations (Hagstrom, 1990). Both 

Dodin’s and Hagstrom’s methods require the discretization of all continuous distributions.
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2.4 Elements of Stochastic Network Reduction

In graph theoretic terms, a stochastic project management network is a directed, 

connected, acyclic graph, G - ( N , A ) ,  composed of a set of n nodes, N,  and a set of m 

arcs (activities), A , with one source node (starting node) and one sink node (terminal 

node). The nodes are numbered such that an arrow leads from a smaller numbered node to 

a larger one. By convention, the source node is node 1 and the sink node is node n. Every 

chain between the source node and the sink node is a path directed from node 1 to node n. 

(Martin, 1965; Horowitz and Sahni, 1976).

A subnetwork, (Nv Ai ), of a network, (N,A ), is a connected network such that 

Nl C N  and A1C A. A subnetwork of a directed, acyclic network is also a  directed, 

acyclic network. Two subnetworks are said to be connected in series if the sink node of 

one subnetwork is the source node of the other. Two or more subnetworks are connected 

in parallel if they all have the same source node and sink node. A series subnetwork, 

(Af ,A),  is a directed, acyclic network with the following properties:

1. Exactly one node, S GW, has exactly one arc, a, GA, 
leaving it, while, if any arcs enter Ss, they are not 
members of A. S3 is the source node of the series 
subnetwork.

2. Exactly one node, T, E .N , has exactly one arc, am GA, 
entering it, while, if any arcs leave Tt , they are not 
members of A. X, is the sink node of the series 
subnetwork.

3 . Every other node, n E.N, is entered by exactly one arc, 
a( GA, and has exactly one arc leaving it, aj GA.

(Martin, 1965)
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A parallel subnetwork, (N,A),  is a directed, acyclic network with the following properties:

1. Exactly one node, Sp EiV, has a set of more than one 
arc, {a^,..,at}C A , leaving it, while, if any arc enters 
Sp, it is not a member of A. Sp is the source node of 
the parallel subnetwork.

2. Exactly one node,7^ E.N, has a set of more than one
arc, {at,...,am} C  A, entering it, while, if any arcs leave 
Tp, they are not members of A. Tp is the sink node of 
the parallel subnetwork.

3. Sp and Tp are connected by two or more series
subnetworks, all having the common source node Sp 
and all having the common sink node Tp.

A series subnetwork has a single path from source node to sink node, while a parallel 

subnetwork has two or more nonintersecting paths from source node to sink node. A 

series subnetwork is shown in Figure 6 (a); a parallel subnetwork is shown in Figure 6 (b). 

Using a recursive definition, a series-parallel subnetwork is a series subnetwork, a parallel 

subnetwork, or two series-parallel networks connected in series or in parallel.

(Martin, 1965)

(a) Series subnetwork

(b) Parallel subnetwork

Figured Subnetworks.
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It is readily seen that a series-parallel network is a directed, acyclic network with a 

source node and a sink node. Moreover, every directed, acyclic network (N,A)  contains a 

maximal series-parallel subnetwork (N1,Al), in the sense that, for every path, n ,  contained 

in (N,A ) but not in (Nl,Al ) y addition of n  to (Nv 4̂,) results in a network that does not 

have the series-parallel property. Thus, every directed, acyclic network may be regarded as 

consisting of a  series-parallel kernel together with cross-connecting subnetworks. (Martin, 

1965)

2.4.1 Series-Parallel Reduction Operations

Series subnetworks and parallel subnetworks can be reduced to equivalent arcs between 

their source nodes and their sink nodes through the use of the mathematical operators, 

convolution and maximum (multiplication), respectively. For simplicity of further 

discussion, suppose that the activity resource consumed by a project management network 

is time.

Series Reduction Operation

Let t,j be the time through arc (activity) atj of a series subnetwork, with density 

function /,/■)• The time through a series subnetwork consisting of n arcs is

Tn - t ,A +—+tijm

The series reduction operation transforms a series subnetwork into a single equivalent arc 

with passage time Tn and density function #„(•) by means of successive applications of the 

convolution operator. Let gk (•) be the density function of

Then

S i ( 0 - / , ( 0  and & (0 - £ , /* ( * ) & _ ,( * - x)dx k -2 , . . . , n .
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Parallel Reduction Operation

The operation of parallel reduction transforms a parallel subnetwork consisting of n 

paths to a single equivalent arc with passage time Tn and density function g„(*). The series

subnetworks constituting each path are first transformed, by means of series reduction 

operations, to single equivalent arcs, the i ^  such arc having passage time t{ and 

(cumulative) distribution function Ft(‘) . Then the time through the parallel subnetwork is

Tn -  max[Z, i j

with distribution function

G.(o-nr.s/]-n;.,F,(o
and density function

8 n ( t )  “  G n

2.4.2 Reducibility

If, in an acyclic, directed network, the conditions of either a series reduction operation 

or a parallel reduction operation or both exist, then the network is termed reducible 

(separable); otherwise, it is termed irreducible (nonseparable). If it is reducible to the 

single equivalent activity (l,N)  between the source node and the sink node, then it is 

termed completely reducible (completely separable). If it is completely reducible, then its 

throughput distribution can be developed by the successive applications of the series- 

parallel reduction operations which will reduce the network to the equivalent activity (1, N). 

Difficulty in determining the throughput distribution arises when the network is irreducible. 

Three different methods have been developed to reduce irreducible networks: “independent 

multiple arcs” (dual arcs), sequential approximation, and ordered recursive conditioning. 

These are discussed in Section 2.5.
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2.4.3 Size and Complexity

The size of the network (N,A), composed of n nodes and m arc (activities), is (n,m). 

There is no general agreement in the literature, however, as to how to quantify how 

difficult the network is to reduce, if it is irreducible. We propose the following definition 

of complexity, motivated by the concept of cardinality from mathematics.

To motivate our definition, it is useful to consider a network (N, A) in two alternate 

representations: first, as a  tree diagram; second, as an adjacency matrix. We illustrate both 

representations with the example network shown in Figure 7.

Figure 7. Network with cross-connections. 
[Adapted from Martin (1965)]

S is the source node and T is the sink (terminal) node. One can depict the network as a tree

in the following manner. Let the network source, S, be the only node at the topmost level 

of the tree, and let the next level consist of all nodes, Nj , such that aSj E A , i.e., each of

these nodes branches from S in the tree. Then, if node Nt is in the (k-l)st level of the tree, 

the k^1 level of the tree includes all nodes, NJt such that atJ E A .  All such nodes, AT, 

branch from Nt in the tree. The tree for our example network is shown in Figure 8. When 

two (or more) o f the nodes labeled Nj branch from a common node, AT, at some level 

higher than that immediately preceding, then Nj is the terminal node for a cross-connection
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between two (or more) paths emerging from Nt. This is illustrated by nodes C and E in 

Figure 9. When two (or more) of the nodes labeled NJtNk,... branch from a common 

node, N(, then Nt is the starting node for a cross-connection between two (or more) paths 

emerging from N t. This is illustrated by nodes B and D in Figure 10.

C 0

Figure 8. Tree diagram.

B ► D

c  (r c  *\ DE (.)E

Figure 9. Tree diagram with cross- 
connections (1).

C 6

O
T

7 \
a d

c  < PE ;E  6r i T

<j  i!> b
T T T

Figure 10. Tree diagram with cross- 
connections (2).
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S A B C D E T
s X 1 1 1
A X 1
B X 1 1
C X 1
D X 1 1
E X 1
T X

Figure 11. Adjacency matrix.

Now depict the network as an adjacency matrix M as shown in Figure 11,where 

My -  1 if and only if the activity atj is in the network, i.e., atJ EA .  The in-degree of a

node is defined as the column sum of M for the node; the out-degree is the row sum.

We may define the complexity of the network (N, A) to be the 2-tuple (c, X.), where c 

is the number of terminating cross-connections in the network and Ne is the cardinality of 

these cross-connections, i.e., the maximum number of in-degrees among these c cross- 

connections. The number of terminating cross-connections c is the number of columns in 

the adjacency matrix M whose column sums are £2, excluding the terminal node column, 

and Xe is the maximum of these c column sums. In the example, the (c,Nc)-complexity of

the network is (2,2).

Alternatively, we may define the complexity of the network (N, A) to be the 2-tuple 

(c',N '), where c' is the number of starting cross-connections in the network and X' is the

cardinality of these cross-connections, i.e., the maximum number of out-degrees among 

these c' cross-connections. The number of starting cross-connections c' is the number of 

rows in the adjacency matrix M whose row sums are &2, excluding the source node row, 

and N' is the maximum of these c' row sums. In the example, the (c',X') -complexity of

the network is also (2,2).
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2.4.4 Approximation of Activity Resource Consumption Distributions

The two (of the three) numerical approximation and reduction techniques which have 

been successfully implemented for stochastic project management networks, sequential 

approximation and ordered recursive conditioning, both require as the first step the 

discretization of all continuous activity resource consumption (arc passage time) 

distributions in the network. The discretization is done by approximating each continuous 

distribution function by a discrete function represented by the set of ordered pairs 

F^t)  -  {(tk,pitt ))}. Dodin (1980) investigated three approximation procedures:

The C(ij) Method

Let the cardinality CF(a,y), the number of ordered pairs in the discretization of the 

continuous discretization of aiJt be CF{atJ) -  C(ij). Then FtJ(t) has 2C(ij) unknowns: 

C(ij) realizations, and C(ij) corresponding probabilities. The first 2C(ij) moments of the 

continuous distribution can be used to construct the following system of 2C(ij) nonlinear 

equations:

where E(T”) is the n^1 moment of Ftj(t) . Methods known to solve systems of non-linear

equations, Gaussian quadrature (Hamming, 1962) and Brown’s method (IMSL, 1991), 

fail to solve this system due to the difference between E(T^) and E(T*c~l) which can be

quite large. Dodin reported that neither method succeeded for C(ij) > 8. This difficulty led 

to obtaining Fy(/) by either assuming that the masses {(pO*)} or the realizations {tk} are

given.

Equal Distances Method

Based on the activity distribution, the minimum and maximum realization values, a and 

b , can be determined. Then, by the use of an appropriate spacing A , depending on the 

desired accuracy of the discretization, the range (b - a ) can be subdivided into equal
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intervals:

tk ~ a  + A(k -  1) for k -  1,... ,C(i/) +1 where C(ij) -  ^  °  '

Dodin (1980) suggested that a and b be determined such that:

P(T < a) -  > fc) -  small value « 0.005

The corresponding probabilities are determined according to:

J*1*)"  t  A, ,dF(/) foreach * -  2,...,C(y) -1
“ A /  Z

f l+ A /Z  ®

and p ( 0  - /* a )  m y J W t )  a™1

For a small A (large C(ij)),the determination of the probability can be approximated by 

p{tk) -  Af(tk) for each it -  1 ,...,C((/) where is the center of the fcth interval, i.e., 

tk -  a + A(k -  1) and / ( / )  -  dF(t). This approach treats all points in the domain of the 

random variable in a uniform fashion, i.e., the domain is partitioned into equal distances, 

which makes this discretization suitable for use with the Fast Fourier Transformation 

method for convolutions. This discretization method is convenient for some distributions 

such as the uniform and the triangular, and some other distributions whose skewness or 

peaks are not very acute. If sharp peaks are present, such as in the case of the exponential 

distribution with large scale parameter, or the normal distribution with a small standard 

deviation, then very small values of A must be used to minimize approximation errors, 

resulting in densely packed discretization points across the domain of the distribution. This 

drawback prompted consideration of using equal probabilities.

Equal Probabilities Method

Again, the minimum and maximum realization values, a and b, can be determined, as 

in the first method. Then Ftj(t) is determined according to:

A -  Pilk) ~ 7 “  for a given C( ij)
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and

^ - ^ " ( 2 w - A/2)
J - 1

using the continuous distribution function F(t). This method is suitable for all continuous 

distributions. However, it is not easy, and/or it can be time consuming, to invert F(t) for 

some distributions.

Consequently, Dodin (1980, 1985a) employed a hybrid discretization approach in his 

implementation of sequential approximation. He limited the use of the equal probabilities 

method to the exponential distribution; the equal distances method was used for the 

uniform, triangular, normal, gamma, and beta distributions. Table 2 presents 

computational experience with this hybrid approach on a UNIVAC 1100/80.

Table 2. CPU Time Required for Discretization. 
[Adapted from Dodin (1985)]

Distribution
CPU time of 
one activity 

(1 x 10~4 second)

CPU time of 100 
activities with different 

continuous df’s (in seconds)
Uniform 2 0.02

Triangular 6 0.06
Normal 28 0.28

Exponential 12 0.12
Gamma 116 1.16

Beta 380 3.80

Dodin (1985a) reported that the accuracy of the approximation of the throughput activity 

resource consumption distribution using sequential approximation is enhanced if the error 

in discretizing the continuous activity distributions is controlled, by increasing the 

cardinality of the set FtJ(t) . He based this conclusion on observations of the effect of

increasing the number of discrete approximation points from 20 to 30.

Hagstrom (1990) restricted her implementation of ordered recursive conditioning to 

networks with discrete, independent probability distributions for task durations. If the
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method is applied to networks with continuous distributions, those distributions must be 

discretized; however, she did not specifically address how that should be done.

2.5 Stochastic Network Reduction Techniques

2.5.1 “Independent Multiple Arcs” (Dual Arcs)

Martin (1965) was the first to suggest a method for reducing irreducible networks:

If, on the other hand, two of the nodes labelled Nj branch 
from a common node, Nf, at some higher level [in a tree 
diagram of the network] than the immediately preceding, 
then Nj is the terminal node for a cross-connection between
two paths emerging from Nr  ... The cross-connection can 
be removed by duplicating each path of the tree from Nt to 
Nj that cannot be immediately collapsed by means of the 
series reduction operation. New nodes and arcs are created 
as necessary in the network. Each newly created arc 
corresponds to an arc on one of the original paths from Nt to 
N j ; the arcs of such a pair are called dual. The members of 
a pair of dual arcs both represent the same random variable 
and are labelled so as to indicate this correspondence. Dual 
arcs are, of course, not independent of one another.

Although his “independent multiple arcs” (dual arcs) method is conceptually sound, he was

unable to develop the concept to the point that he could effect a practical implementation.

While refining a conditioned sampling approach to simulation of stochastic networks 

which he had earlier developed with Burt, Garman (1972) proved a theorem which is key 

to the implementation of the “independent multiple arcs” (dual arcs) method:

Theorem 1. Any series-parallel reduced network which is 
not trivial (i.e., does not consist of only one activity) will 
possess (1) at least one activity a such that a has more than 
one successor while each of its successors has only a as a 
predecessor; and (2) at least one activity b such that b has 
more than one predecessor while each of its predecessors 
has only b as a successor.
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Dodin (1985b, 1985c) completed the theoretical development of the “independent 

multiple arcs” (dual arcs) method. The following notation was used in his development;

aVj -  arc ( i, j) E  A: starting at node i and 

ending in node j  where i less than j ,  
it is the only arc connecting node i 
to node j  in the network.

Ti -  random variable , the realization times 
of node i.

A(i) -  {j E.N:(i,j)E.A}, the set of nodes 
succeeding node i.

B(i) -  {k EN: (£,/) E  A}, the set of nodes 
preceding node i.

P(j) -  {k fE.N:k less than i and k  connects 
to i by a path), i.e. the set of nodes 
that precede node i and connect to 
node i by an arc cm- path.

D(i) -  {JE.N: j  greater than i and i connects 
to j  by an arc or path}, i.e. the descen - 
dents of node i.

Starting with a stochastic network, it is possible to determine if it is completely reducible, 

reducible, or irreducible. Pivotal to this determination is the interactive graph (IG) shown 

in Figure 12.
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Figure 12. The interdictive graph.
[Adapted from Dodin ( 1985b)]

The interdictive graph is irreducible and shares with all irreducible networks the following 

properties:

1. The number of nodes N  a: 4 and of arcs A a  5 .

2. For each / * 1 or N, |A(/)| + |fl(/)| 2  3 ; hence, there are no 
arcs in series.

3. Either |A(1)|-1, in which case |B (2 )|- |A (1 )|-1 and
|A(2)|a:2; or |A(l)|fc2. Therefore, without loss o f 

generality, it can be assumed that in an irreducible 
network |A(l)|a 2.

4. Either |S( A)| - 1 ,  in which case |A(N  - 1)| -  |fl(N)\ -  1 
and |B( W - 1)| a 2 ; or [S( 7V)| a 2 . Similarly, it can be 
assumed that (B( N)\ ̂  2.

5. There exists a smallest numbered node j  * 1,2 or N  and 
a node i& P ( j ) , such that there are two independent 
paths (no arcs in common) connecting / to j .

Dodin (1985b) proved the following characterization of network reducibility:

Theorem 2: An activity network is not completely reducible
if and only if it contains the interdictive graph.

Completely reducible networks can be reduced to the equivalent activity (1, AO in a fixed
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number of series-parallel reduction [convolution and maximum (multiplication)] operations; 

Dodin (1985b) proved this result

Proposition 1: A completely reducible network, G(N,A), 
can be reduced to the activity (1,1V) in N  - 2  convolution 
and A -  N  +1 multiplication operations.

The properties of the interdictive graph and Theorem 2 combine to the following steps, 

which, when applied to any network, identify all possible series-parallel reduction 

operations and the corresponding irreducible network, if the network is not completely 

reducible:

1. Calculate |A(i)| and |J3(/)|, the in-degree and out-degree, 
for all nodes i -1  ,...,1V in the network G(1V, A).

2. If |A(i)|+ |fi(i)| for all i *1 orlV, then the network is
irreducible; stop. If, on the other hand, |A(/)|+ |fi(i)| -  2
for at least one i * 1 or IV, then the network is reducible, 
since a convolution is possible, since any two nodes of 
the network are connected by at most one arc. If the 
convolution is carried out, it might give rise to further 
series-parallel reduction operations.

3. Successively scan the network to identify and then carry 
out all possible series-parallel reduction operations, i.e., 
effect the reduction G(N,A)~* G(1V',A') where 
N' < TV and A 's  A, as shown in the flowchart in Figure 
13.

If A' - 1 ,  the network is completely reducible and the reduction procedure terminates with 

the distribution function of TN, which is equal to the distribution function of the equivalent 

activity (1,1V). If A' *1, then A'fe 5 and IV'a 4, andG (N '.A ') is the corresponding 

irreducible network G(N,A). The approximate distribution function of TN is then obtained 

through further reduction based on the “independent arc multiplication” (arc duplication) 

operation.
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Figure 13. An algorithm for determining the irreducible network. 
[Adapted from Dodin (1980)]
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(a) (b)

(c) (d)

Figure 14. The interdictive graph and all its completely reducible forms.
[Adapted from Dodin (1985b)]

An irreducible network can be made completely reducible by duplicating one or more of 

its arcs. The interdictive graph (Figure 14 (a)), becomes completely reducible if arc (1,2), 

or arc (3,4), or both are “independently multiplied” (duplicated) in the fashion shown in 

Figures 14 (b) - (c), respectively. In Figure 14 (b), the paths - 1  -*• 2 -*  4 and 

l - * 2 '- * 3 - * 4  of the interdictive graph become independent of each other. 

Similarly, in Figure 14 (c), path n 1-  l - * 2 - * 3 * - * 4  becomes independent of path 

ir3 -  1-* 3 -* 4 , while in Figure 14 (d) the three paths of the interdictive graph become 

independent of each other. Hence, the “independent multiplication” (duplication) operation 

means the splitting of an arc along with its node or start node, but not both, into two; the 

new arc has the same duration and distribution function as the original arc. For example, in 

Figure 14 (b), the durations of the arcs (1,2) and (1,2’) are independent and identically 

distributed random variables. Such a split may cause the independence of one of the paths 

(or subpaths) passing through the “independently multiplied” (duplicated) arc from the
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remaining paths passing through the arc; also, such a split gives rise to a convolution 

operation which might lead to further reductions in the original irreducible network. Thus, 

the difference between the network after “independently multiplying” (duplicating) an arc 

and the original irreducible network is the increase of arcs by one (the split of the 

“independently multiplied” (duplicated)) arc), the increase of the nodes by one (the 

duplication of the start or end node of the “independently multiplied” (duplicated) arc), and 

the loss of some of the dependency between the paths containing the “independently 

multiplied” (duplicated) arc. Furthermore, if, in the process o f “independent 

multiplication” (duplication), none of the original paths of the networks is lost, and no new 

paths are gained, then the throughput (realization time) of the final event, TN, in the

network does not change. But, the loss of the dependency between some of the network 

paths or subpaths may alter the distribution function of TN. Martin (1965) applied a similar

concept in his procedure.

The distribution function obtained by the reduction process bounds the exact 

distribution function of TN \ such a bound depends on the lost dependency, which depends

on the number of “independent multiplication” (duplications) made and the criticality of the 

“independently multiplied” (duplicated) arcs. If no “independent multiplications” 

(duplications) are made, then the distribution function obtained by the reduction process is 

equal to the exact distribution function of TN. If, on the other hand, the network is not

completely reducible, then the distribution function obtained by the reduction process 

bounds the exact distribution function of TN from below, if TN is the duration of the 

longest path, or from above, if TN is the duration of the shortest path (Esary, Proschan and 

Walkup, 1967; Dodin, 1985c).

Moder and Phillips (1964) proved that the CPM approximation based on activity 

duration means consistently underestimates the mean throughput of stochastic networks. 

Hence, if TN is the duration of the longest path, when “independent multiple arcs”
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reduction is employed, this relationship holds:

E((Tn ) c p m ) *E(Tn)* E ((T n)"independent multiple a rc l)

To choose the arcs to be “independently multiplied” (duplicated) to transform an 

irreducible network into a completely reducible network, the arcs of an irreducible 

stochastic network are divided into two disjoint sets: arcs which can be “independently 

multiplied” (duplicated), and arcs which cannot The arcs to be “independently multiplied” 

are chosen from the first set 

Duplicable Arcs

The objective of “independently multiplying” (duplicating) an arc is to facilitate 

evaluation of F(t) by reducing the dependency among the paths in the path set P. 

Dependency is caused by the common arcs; hence, “independent multiplication” 

(duplication) is limited to the common arcs. However, not every common arc can be 

“independently multiplied” (duplicated). Only common arcs which bring the original 

irreducible network closer to its completely reducible form without deleting or adding paths 

to the network are eligible for “independent multiplication” (duplication). These two 

objectives are fulfilled by choosing the arcs to be “independently multiplied” (duplicated) 

from the set of common arcs where each arc in the set has one or both of the following 

properties:

1. It is the only incident arc on its end node, and the end 
node has an out-degree of two or more, as shown in Part 
(a) of Figure 15, i.e., if EA' is such an arc, then
|S(y')|-l and |/4(y')|fe2. At least one arc with this 
property always exists in the irreducible network, (e.g. 
arc (1,2) in any irreducible network). If arc atj with this
property is duplicated, then an arc a iy. having the same 
starting node is created; it terminates in the newly created 
node, denoted by j ' , which is connected to the smallest
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numbered node succeeding node j  via the first arc 
emanating from node j .  Therefore, |B(y')| -  |A (/)J« 1, 
which gives rise to a convolution operation, as shown in 
Part (b) of Figure 15.

2. It is the only arc incident from its start node, the latter 
having in-degree of two or more, as shown in F*art (c) of 
Figure 15, i.e., if atj E.A! is such an arc, then 2
and |A(i)| -  1. An arc with this property always exists in 
any irreducible network; it is the mirror image of an arc 
with the first property, e.g. arc (N' - I ,N ' )  is such an 
arc. In this case an arc aCj with the same end node is
created; it starts in the newly created node / ' ,  which is 
connected to the largest numbered node in the bunch 
B(i) via the largest numbered tire incident into node /.
Thus a convolution operation is created; this duplication 
is shown in Part (d) of Figure 15.

The above two properties are the same as the a and b activities of Theorem 1 (Garman, 

1972), but Dodin ( 1985b) does not credit Garman for these results. A duplicable arc may 

have both of the above properties, as shown in Part (e) of Figure 15. This may be the case 

for some intermediate arcs in the irreducible network. In this case, such an arc is treated as 

an arc with the first property, as is shown in Part (f) of Figure 15, or as an arc with the 

second property, as shown in Part (g) of Figure 15. The arcs which possess the above two 

properties form the duplicable set.

“Independently multiplying” (duplicating) any other arc in the network, a non-common 

arc or a common arc that does not have either of the above two properties, adds more paths 

to the network and does not bring the network any closer to its completely reducible form. 

For example, “independently multiplying” (duplicating) any of the common arcs in the 

interdictive graph, say arc (2,4), results in the network shown in Figure 16, which has four 

paths and is still irreducible.

The preceding definition of the “independent multiplication” (duplication) concept is 

based on duplicating arcs; hence, arcs are characterized into duplicable and non-duplicable
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(b)(a)

(c) (d)

(0(e)

(g)

Figure 15. Forms of duplicable arcs.
[Adapted from Dodin (1985b)]
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Figure 16. Duplicating arc (2,4) in the interdictive graph.
[Adapted from Dodin (1985b)]

sets. A duplicated arc indicates which node is to duplicated; it is the end node if the arc has 

Property 1, and the start node if the arc has Property 2, and either node, but not both 

nodes, if the arc has both properties. The concept of duplication could just as easily be 

based on duplicating nodes. In this case, the nodes of the network can be partitioned into 

duplicable and non-duplicable nodes. The duplicable nodes are of two types: the first type 

is like the end node of an arc with Property 1, and the second type is like the start node of 

an arc with Property 2; such nodes always exist in an irreducible network. The duplication 

of a node of the first type requires the “independent multiplication” (duplication) o f the only 

arc incident into it, as shown in Part (b) of Figure 15, while the duplication of a node of the 

second type requires the “independent multiplication” (duplication) of the only arc 

emanating from it, as shown in Part (d) of Figure 15. There are no nodes in any network 

which have the properties of both types.

The Reduction Process

An irreducible network can be reduced to the single equivalent arc (1 ,N)  by 

“independently multiplying” (duplicating) arcs with Property 1 only, or arcs with Property 

2 only, or a combination of both. This implies that the “independently multiplied” 

(duplicated) arcs are not unique, and that there are many sequences to choose from. 

Hence, an “independent multiple arcs" approximation reduction method could be based on
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“independently multiplying” (duplicating) the first available arc with Property 1, or the first 

available arc with Property 2, or a hybrid process, where the next arc to be “independently 

multiplied” (duplicated) is selected based on a decision rule or objective function.

Efficiency and Complexity

The interdictive graph can be reduced to the equivalent activity (1,4) by “independently 

multiplying” (duplicating) only one activity having either Property 1 or Property 2. This 

observation gives an upper bound on the number of arcs to be “independently multiplied” 

(duplicated). Dodin (1985b) proved these results:

Proposition 2: The number of duplications necessary to 
reduce an irreducible network to the equivalent arc (1, AO is 
less than or equal to the total number of interdictive graphs in 
the irreducible network.

Theorem 3: Given an irreducible network G(N,A),  then the 
[“independent multiple arcs” (duplication) approximation] 
reduction process can reduce it to the equivalent arc (1, N) in 
L duplicates, where L s  A -  N  -  |A(1)| + 2.

Corollary: The number of [parallel-reduction] multiplication 
operations required to reduce any network G(N,A)  to the 
arc (1, AO is independent of the reducibility of the network, 
and it is a constant equal to A - N  + 1.

Proposition 1, Theorem 2 and the Corollary together give the complexity of an 

“independent multiple arc” (dual arc) approximation reduction process. From the 

Corollary, the process performs A - N  +1 parallel reduction (maximum) operations, and 

from Proposition 1 and Theorem 2, L + N -  2 series reduction (convolution) operations. 

If C is the complexity of the series-parallel reduction operations, the reduction process 

complexity is O(CA). However, A s  N(N  -1 ) / 2 for all acyclic, directed networks. 

Therefore, the reduction process complexity is OiCN1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

41

An “independent multiple arc” (dual arc) approximation reduction process will not 

necessarily duplicate the minimum number of arcs to reduce the network to the equivalent 

arc (1,A0- It may be possible to reduce the number of duplications by duplicating the 

duplicable arc with the highest path index first, where the path index of an arc is the 

number of paths containing the arc. Augmenting a reduction process by this rule still does 

not guarantee that the augmented procedure duplicated the minimum number of arcs; Dodin 

cites a counterexample. Reducing a network by “independently multiplying” (duplicating) 

the minimum number of arcs is still an unsolved question, whose solution may require the 

identification of all the direct and embedded interdictive graphs in the irreducible network. 

There is no efficient solution technique for this identification problem, and, moreover, the 

problem appears to be NP-complete. (Dodin, 1985b)

2.5.2 Sequential Approximation

Dodin (1980, 1985a) developed a second method for reducing irreducible networks, 

sequential approximation, which is based on the determination of the throughput 

distribution function F(t) by constructing the distribution functions through the nodes of 

the network in sequential order. Sequential approximation can be applied to any stochastic 

network with N >2 and |A|> 1, reducible or irreducible. An approximation reduction 

process based on sequential approximation enters the sequential approximation step with 

the irreducible network G(N',A'), which is reached in an analogous manner to the 

“independent multiple arcs” (dual arcs) approximation reduction methods, i.e., by 

successively scanning the network to identify and then carrying out all possible series- 

parallel reduction operations so as effect the reduction G(N,A) -*  G(N',A').  Sequential 

approximation starts at node 1, which has the discrete distribution function F(l) -  {(0,1)}, 

then proceeds sequentially to approximate the distribution function of the throughputs 

(durations, or realization times) of the next nodes in increasing order, ending with the sink
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node, N.

The following notation was used in his development:

atj -  arc (i,y) 6 A  starting at node i and 

ending in node y where i less than y, 
it is the only arc connecting node i 
to node y in the network.

B(j) -  the set of arcs ending at node y.

rij -  number of arcs ending at node y, 

the in - degree of node y.

rrij -  number of arcs emanating at
node y, the out - degree of node y.

Ytj -  random variable , the duration 

of activity air

Tj -  random variable , the realization times 

of node j.

The distribution function of T; for all j(EN'  is approximated using the following 

procedure, which is depicted in the flowchart in Figure 17:

1. Without loss of generality, assume the sequential 
approximation is at node j G N ' , then nij > 1 or tij > 1, 
i.e., n t j+ nj a  3, as shown in Figure 18. Determine the
set B(j), which is the set of activities ending at node j ,  
and rank the activities in an ascending order of their 
starting nodes, as shown in Figure 2.

2. For each activity a(J E5(y), convolute F ^y )  with F((/), 
i.e., the distribution function of Yi} with the distribution 
function of 7*. Denote this convolution by F(i) .
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Figure 17. Sequential approximation flowchart. 
[Adapted from Dodin (1980)]
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Figure 18. A node in an irreducible network.
[Adapted from Dodin (1985c)]

3. Fj(t) -  P(Tj s t )  -  max{F(t) for all i E.N' such that atj e

B(j)}
The parallel-reduction operator may be performed 
sequentially to avoid unexpected escalation in storage 
requirements [when continuous distribution functions are 
discretized]. For example, let:

F( i2) -  max{F(z,), F(i2 )>,
i.e., for any value of t > 0,

F U .i j) -  P{max (7; + + T,w}s l)

-  P(Tiy + Y^ s; + YhJ s  t).
Then,

F ( ij,g  -  max{F(i,,i2XFii^)}, 
and so on, until Fj(t) is finally obtained where:

Fj(t) -  F i i ^ J J  -  max{F(in.I ,/._,),F(/i)}, 
k > j & N ' , until finally, node N is reached, and FN(t) 
is approximated.

The underlying assumption behind the sequential approximation method is reflected in 

Step 3; it is the independence of the random variables {Ti, i E N r}. In any irreducible 

network, the T.'s may not, usually are not, independent. If the assumption of 

independence is the only source of error, which is the case only if at the outset all the 

activities have discrete distribution functions and there is no re-discretization of intermediate 

convolution or maximum (multiplication) operations to control storage requirements (in 

Steps 2 and 3), then the approximate distribution function, FN(r), obtained through the
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sequential approximation method, bounds the exact distribution function of TN from

below. Kleindorfer (1971) was the first to use this assumption of independence to bound 

the exact distribution function of TN from below.

Complexity

The complexity of sequential approximation is a linear function of the number of series-

reduction (convolution) and parallel-reduction (maximum) operations. In an irreducible

network with A arcs and N  nodes, Step 2 of the sequential approximation method requires 

A - m x convolutions, and Step 3 requires ni -1  maximum operations for each j  * 1 or 2.

The total number of maximum operations is

j ? (» i , - l ) -A -J V  + l.
1 -3

Therefore, the complexity of sequential approximation is 0(CA) where C is the 

complexity of the series-parallel reduction operations. If continuous activity distribution 

functions are discretized, then C is a function of the cardinality of the d iscrete  

approximations. If the cardinality of the discrete distributions is less than or equal to k , 

then the complexity of the series-parallel reduction operations is at worst 0(k2) .

To the complexity of sequential approximation must be added the complexity of the 

reduction of an original network, G(N,A),  to its irreducible network, G(N',A').  

Completely reducible networks can be reduced to the single, equivalent activity (1, N)  in a 

fixed number of series-parallel operations. To reduce the network to (1, AO requires that 

N - 2  nodes and A - l  arcs have to be suppressed, but a series-reduction (convolution) 

operation is necessary to reduce the network by one arc and one node. Therefore, N - 2  

convolution operations and /4-Ar+ l  parallel-reduction (maximum) operations are 

required, and the complexity of the reduction process is at worst 0(CA) where C is the 

complexity of the series-parallel reduction operations, exactly like the complexity of 

sequential approximation. Consequently, the overall complexity of the sequential
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approximation and reduction method is O(CA) .

Efficiency

It is difficult to determine the accuracy of an approximate throughput distribution 

function, FN (t), obtained with the sequential approximation and reduction method, since

the exact throughput distribution function is generally not known fora stochastic network. 

Also, it is not possible to compare the accuracy of this method with the accuracy of other 

methods; for one, with the exception of Monte Carlo simulation, they cannot be applied to 

large networks; for another, there are no reported computational results for most other 

methods, with the exception of ordered recursive conditioning (Hagstrom, 1990). The 

latter is discussed in Section 2.5.3. Dodin (1980,1985a) measured the accuracy of FN(t)

by its closeness to the corresponding distribution function obtained by extensive crude 

Monte Carlo simulation, F'n(t), where n is the simulation sample size (number of 

simulation replications). [Note that Dodin’s nonstandard notation, F’n(t), refers to the

approximated distribution function obtained with Monte Carlo simulation, not the 

probability density function corresponding to F„(f).] The distribution function F'n(t) was 

used as a surrogate for the exact, but unknown, distribution function, F(t) -  P(TN s  t) , 

since it is a  known result (Kleindorfer, 1971) that F ’n(t) converges to the exact distribution 

function F(t) a s n - * ® .  The closeness between FN(t) and F'n(t) was measured using 

these performance measures:

1. Maximum of the absolute values of the deviations 
(MADV) between the two distribution functions, FN(t) 
and F f i ) .  MADV is the Kolmogorov-Smimov test 
statistic.

2. Average of the absolute values of the deviations 
(AADV).

3. Average values for TN obtained from both distribution 
functions, FN(t) and F'n(t).

4. Standard deviation of Ts  obtained from both distribution 
functions.
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Dodin (1980, 1985a) discretized all continuous activity duration (passage time) 

distributions and generated “strongly randomized networks.” He found that variations in 

the measures of performance depended upon the structure and size of the network, the 

distributions of the activity durations, the sample size (number of replications) in the Monte 

Carlo simulation, and the accuracy of the discretization of the continuous distributions.

The approximated distribution function, F'n(t), was obtained using crude Monte Carlo

simulation for each network tested. During each simulation replication, the simulation 

model assigns a random value, tiJt to the duration of each activity at] in the original,

unreduced stochastic network, using the inverse transformation method. Then, CPM is 

applied to the network to determine a realization for TN. These two steps are repeated for a 

large number of times, n , to insure that F'n(t) is a very close approximation to the exact 

distribution function of TN. Grouped data analysis is then used to generate F'n(t) as a 

discrete cumulative distribution function of the simulation realizations for TN. VanSlyke 

(1968) and Elmaghraby (1977) discuss the sensitivity of the accuracy of simulation of 

PERT-type networks to simulation sample size. Based on their observations, Dodin 

(1980, 1985a) chose a  simulation sample size of 1000 replications for his analysis.

To achieve a more convincing test of accuracy, each network tested was a “strongly 

random network,” generated at random from the space of all connected, acyclic, directed 

graphs with the required numbers of nodes and activities. The network generator used was 

Dodin’s (1993) modified version of the generator originally developed by Herroelen and 

Caestecker (1979). Random network generation is discussed in Section 2.7.2.

Activity duration distribution functions were assigned from a set of seven distributions: 

uniform, triangular, normal, exponential, gamma, beta, and discrete. The parameters of 

each distribution were set to those of a representative member of that distribution family at 

the beginning of the analysis. Although they could have been varied during the analysis, 

they were not, as Dodin (1980, 1985a) held that the choice of distributions and their
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parameters is of no particular significance except as it reflects the general applicability of the 

approximating procedure.

Dodin (1980, 1985a) reported results for two experimental combinations: different 

activity distribution functions with a fixed network, and different size networks with a 

fixed activity distribution function for each activity. Table 3 shows how the distribution 

type affects the performance measures for a randomly generated network with 10 nodes 

and 15 activities. Table 4  reflects the effect of network size; the uniform distribution was 

applied to each of the eight networks.

Table 3. Performance Measures for Various Distribution Functions. 
[Adapted from Dodin (1980, 1985a)]

Distribution
Type

Comparison of the Approximate DF with that of MCS
Average Standard Deviation

MADV AADVApprox. MCS Approx. MCS
Uniform 27.27 27.20 4.868 5.316 0.0426 0.0115

Triangular 29.13 29.21 3.925 4.255 0.0513 0.0180
Normal 40.29 40.29 4.059 4.180 0.0585 0.0206

Exponential 12.50 12.49 3.511 3.899 0.0328 0.0099
Gamma 16.85 16.61 3.504 3.401 0.0436 0.0122

Beta 36.96 37.16 3.879 4.194 0.0772 0.0275
Discrete 18.50 18.51 2.055 2.076 0.0083 0.0016

All 28.46 28.07 3.808 4.005 0.0274 0.0070

Table 4. Effect of Network Size on the Performance Measures. 
[Adapted from Dodin (1980,1985a)]

No.
Nodes

No.
Arcs

Comparison of t le Approximate DF with that of MCS
Average Standard Deviation

MADV AADVApprox. MCS Approx. MCS
10 15 27.27 27.20 4.868 5.316 0.0426 0.0115
20 40 47.37 46.47 6.733 7.625 0.0557 0.0162
30 50 52.30 51.89 6.251 7.139 0.0525 0.0169
40 60 58.98 57.71 6.962 8.174 0.0633 0.0182
40 80 56.06 55.14 5.952 6.553 0.0303 0.0115
50 75 62.54 62.58 7.698 8.224 0.0651 0.0259
50 100 67.38 65.56 6.182 7.752 0.0880 0.0263
60 150 82.82 80.05 7.155 9.074 0.1082 0.0306
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In the eight test networks considered in Table 3, the approximate mean values of the 

throughput (project completion time) were very close to the simulation means. The 

maximum deviation between the two means was less than 0.43. The approximate standard 

deviations were less than the simulation standard deviations, which implies that the 

approximated distribution functions have less variation than the distribution functions 

obtained by simulation. The graphs of the density functions obtained by both procedures 

supported the general forms obtained by crude Monte Carlo simulation by VanSlyke

(1968). MADV and AADV varied by distribution type. MADV was always less than

0.08, and AADV less than 0.03; although Kolmogorov-Smimov goodness of fit tests 

could have been performed on the MAD Vs, none was reported. The smallest values for 

both were obtained for the network for which all activity distribution functions were 

discrete, an expected result, since there were no errors of discretization for this network. 

The second smallest values were obtained for the network for which the activity 

distribution functions were of mixed types, including some discrete distributions. The 

accuracy of approximation is enhanced by having more accurate discretization. This was 

the case with the network with exponential activity distribution functions; the exponential 

distribution was approximated on thirty discrete points, whereas each of the other 

continuous distributions was approximated on only twenty points.

As the simulation sample size increased, the sampled distribution, F'n(t), converged to 

the approximate distribution, FN(t). In particular, the simulation mean increased in the 

direction of the approximate mean and the MADV was halved for an increase in the 

simulation sample size from 100 to 1000 replications.

The eight networks in Table 4  were generated at random; the uniform distribution was 

applied to each. MADV and AADV increased as network size increased. Dodin (1985a) 

suggested that this was due to his having used a constant number of simulation replications 

for all the networks tested, since larger networks require larger simulation sample sizes to
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maintain approximation accuracy. The MADVs, the most sensitive measure, were taken on 

at values within the first 30% of the distribution functions. These deviations tend to have 

negative values in the first half of distribution functions and positive values in the second 

half. As discretization errors decrease and the simulation sample size increases, these 

deviations converge to zero. Dodin (1985a) suggested that this observation increases the 

applicability of sequential approximation and reduction, since the right hand side of the 

throughput distribution is of more interest to project management than the left hand side.

CPU time requirements of the method, excluding simulation, consisted of discretization 

time, time for series-parallel reduction operations to reduce the original network to its 

irreducible form, and time sequential approximation time. Initial discretizations required 

less than 0.04 CPU seconds on the average on a UNI VAC 1100/80. CPU time 

requirements of the method were minimal when compared to the time requirements of 

simulation. Dodin (1985a) reported the CPU times in Table 5. Simulation time depended 

on the distribution type; simulation time doubled for continuous distributions other than the 

uniform because of inverse transformations. However, distribution type did not affect the 

CPU time of the method beyond the discretization step. The CPU times of the method in 

Table 5 confirm the method’s complexity. The CPU time of the seventh network was less 

than the CPU times of any of the other networks of the same size; the seventh network had 

discrete activity distributions on four points, while the activity durations of the other 

networks were approximated on at least twenty points. The CPU times of the networks in 

the lower half of the table increased as the number of activities increased.

For the constant simulation sample size of 1000 replications, simulation times were 

larger by a factor of three than the CPU times of the method. Dodin (1985a) speculated 

that this factor might double if distributions other than the uniform were considered. He 

further observed that if the simulation sample size were increased to achieve greater 

accuracy of the sampled distribution, the simulation time would increase correspondingly.
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Table 5. CPU Time of Sequential Approximation and Reduction Method and Simulation. 
[Adapted from Dodin (1985a)]

Distribution
Type

Network size CPU time in seconds
No.

Nodes
No.
Arcs

Approx.
Method

MCS 
Sample size = 1000

Uniform 10 15 1.665 4.31
Triangular 10 15 1.673 7.25

Normal 10 15 1.680 6.43
Exponential 10 15 1.678 7.33

Gamma 10 15 1.695 7.58
Beta 10 15 1.766 7.94

Discrete 10 15 0.994 9.34
All 10 15 1.623 8.52

Uniform 20 40 4.448 12.02
Uniform 30 50 5.335 15.58
Uniform 40 60 5.974 17.94
Uniform 40 80 7.919 24.34
Uniform 50 75 7.499 23.54
Uniform 50 100 10.867 35.80
Uniform 60 150 15.822 51.90

Based on his analysis of the sequential approximation and reduction method, Dodin 

(1985a) concluded:

1. The method is at its best if the activities have discrete 
distributions to start with. The accuracy of approxi
mation can be increased by reducing the errors of 
discretization.

2. The approximate mean and standard deviation of the 
project completion time are very close to the “true” mean 
and standard deviation. The approximate mean may not 
bound the true mean from above, since FN(t) does not 
necessarily bound the actual distribution function of the 
project completion time from below.

3. In comparison with the distribution function obtained by 
Monte Carlo simulation, the sampled distribution 
converges toward the distribution function as the sample 
size increases. This demonstrates that the distribution 
function of the project completion time is not sensitive to 
the assumption of independence of the paths in the 
network on one hand, and on the other hand, it also 
indicates that the distribution function obtained by the 
method is very close to the actual distribution.
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4. The maximum value of the absolute deviation, MADV, is 
located in the domain of the lower 30% of the 
distribution; this observation increases the applicability 
of the approximate distribution function since the 
realizations of interest to management are those in the 
upper half of the distribution function.

5. The processing time requirements of the method are 
minimal if compared with the CPU time requirements of 
simulation. The CPU time requirements for the method 
are always less than sixteen seconds for any activity 
network of size (N,A) s  (60,150) on a UNI VAC 1100/ 
80.

(Dodin, 1985a)

2.5.3 Ordered Recursive Conditioning

Hagstrom (1990) developed a third method for reducing irreducible networks, an 

algorithm which is based on ordered recursive conditioning on the activity durations. This 

is a common technique in reliability computations, where it is also referred to as pivoting, 

factoring, or backtracking. The network must have discrete activity duration distributions, 

or continuous distributions must be discretized. The algorithm uses a representation of the 

network reduction problem similar in concept to Mirchandani’s (1976) emergency 

equivalent network for stochastic shortest-path problems. Each activity has several states, 

each one corresponding to a realization of the length of time the activity requires. This is 

represented in the project network by assigning each activity as many arcs as it has states.

Such a representation is shown in Figure 19. The underlying project network is a 

standard PERT model, which consists of eleven activities. Each activity requires one of 

two equally likely durations of time to be completed; hence, in the figure it is represented as 

having two possible states.

Conditioning algorithms enumerate substructures of the system under consideration. 

The objective of ordering the conditioning is to minimize the size of the enumeration: the 

structures enumerated here are the candidates for longest-path arborescence of the network. 

The recursive conditioning is based on choosing which state of which activity will
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10

Figure 19. Activity-duration-states representation of a PERT network.
[Adapted from Hagstrom (1990)]

determine the longest path into a particular node. Hagstrom’s (1990) version of the 

algorithm computes moments of the probability distribution of project duration.

The algorithm is stated in terms of a recursive function PIVOTS. At a call of depth k 

to PIVOTS, the lengths of the longest paths to nodes 1 through k have been fixed. 

PIVOTS then conditions on which of the arcs directed into node k + 1 determines the 

longest path into that node. It then calls itself for each of these cases and proceeds 

recursively until it reaches a depth corresponding to the number of nodes in the network; at 

this level, it returns the selected powers of the length of the critical path. When a level k 

call is finished, PIVOTS returns the moments of the critical path length conditioned on the 

distances to nodes 1 through k . Hagstrom (1990) proved that PIVOTS correctly computes 

the moments of the project duration.

Another version of the algorithm computes values of the cumulative distribution 

function of the project duration. Instead of accumulating expectations, the alternate version 

accumulates conditional probabilities. Both versions have the flexibility to process several
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distributions of activity durations at once. As long as the distributions have the same 

ranges, the order of processing is not changed and the computation requirements are not 

greatly increased.

Computational Experience

The algorithm was coded and compiled in Pascal and run on an IBM3081 operating 

under CMS. Hagstrom (1990) ran cases from the literature as well as randomly generated 

cases. Characteristics of the cases and computation times are shown in Table 6. Input, 

preprocessing, and output times were excluded; except for small networks, these require an 

insignificant amount of total computation time. No analysis has been made of computer 

storage requirements. The algorithm keeps only one copy of the network, and the amount 

of data in the recursion stack is minimal, so computation time requirements are much more 

likely to be limiting than storage requirements, even for less space-efficient 

implementations.

Table 6. Computational Time Requirements for Selected Cases. 
[Adapted from Hagstrom (1990)]
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TEST5A through TEST12A were randomly generated cases where an attempt was 

made to keep the average number of tasks directed into each node at two. TEST5A and 

COMPLET6 through COMPLEIO were complete, acyclic digraphs with randomly 

generated activity duration distributions. SERIES 10 is a network in which the only 

activities are of the form (/, i + 1). For all these cases, the probability distribution of activity 

time was generated by randomly selecting a mean time between 0 and 10, randomly 

selecting a distance from the mean between 0 and the mean, and then constructing a three- 

point distribution with probability 0.6 of being the mean and probability 0.2 each for being 

at the selected distance above and below the mean.

The remaining cases were taken from the literature. VANSLYKE is a discrete version 

of Figure 10 from VanSlyke (1963); 0.1 probability was assigned to both optimistic and 

pessimistic activity completion times and 0.8 probability assigned to the most likely time. 

ELM4FIG4 is Figure 4.4 from Elmaghraby (1977). SHOGAN1 is Example 1 from 

Shogan (1977). The data for PRITSKER were taken from Table 6.1 in Pritsker and Kiviat

(1969). STRIPDWN is Kleindorfer’s (1975) example with each activity restricted to 

taking either its smallest or largest possible length. Table 6 specifies the number of nodes 

for each case and the effective in-degree:

in-degree of node (k +1) - number of activities incident to node (k  +1) + 1 

for each node from node 2 to the sink node. A “1” in the table indicates a null entry. 

Confirmation of an upper bound developed (on the work required to sort the arcs in the in

directed adjacency list of any node) appears to require more large examples than Hagstrom 

could run.

Analysis of Computation Requirements

Hagstrom (1988) demonstrated that, unless P=NP, we cannot hope to obtain a 

polynomial algorithm for the reduction of a stochastic project network. The ordered- 

recursive-conditioning algorithm is not a polynomial algorithm. Its computation time
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requirements were determined by analyzing the recursion tree associated with applying the 

algorithm to a particular instance of a stochastic project network. Hagstrom (1990) proved 

this result:

Theorem 4: Let H  be an upper bound on the work required 
to sort arcs in the in-directed adjacency list of any node in a 
project network. Let a  be the number of nodes for which 
all in-directed activities have deterministic durations. Let II 
be the product of the effective in-degrees. Then an upper 
bound for the work required in applying PIVOTS is a 
constant times H(a  + 2)11.

In a complete project network with n nodes and k states per activity, the computation 

requirements of this algorithm would be 0 ( H ‘k n‘rt\). In contrast, computation 

requirements for Martin’s (1965) algorithm would be 0(Q-kni) where Q represents the 

time required to compute the project duration distribution in a series-parallel (completely

reducible) network. Both H  and Q are polynomial functions of n and k . Hence, this

algorithm has a better worst-case performance than does Martin’s algorithm.

Improving On The Algorithm

Hagstrom (1990) observed that the rapid growth of computation time with the size of 

the network limits the use of this algorithm to relatively small networks. She considered 

how the algorithm might be improved in order to increase the size of the network that can 

be handled. If improvements are restricted to the framework of the algorithm as originally 

developed, the possibility for improvement appears to be limited to fine-tuning the 

generation of the algorithm’s recursion tree, so that a few more branches can be removed, 

or an improved method of internal sorting. Such improvements may make the algorithm 

more competitive with Martin’s (1965) for sparse networks. However, neither of these 

improvements will significantly reduce the size of the recursion tree, and the size of the tree 

is the major determinant of the computation time.
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Hagstrom (1990) considered going outside the framework of the algorithm to see if 

other approaches might yield a significant reduction in computation time. She concluded 

that the two most obvious approaches do not appear promising. Exhaustive enumeration of 

some combinatorial substructure which appears within the original problem’s structure 

seems to be required in algorithms for #P-complete problems. The amount of work grows 

polynomially in the number of this substructure, and, unfortunately the number of these 

substructures can grow exponentially with the size of the original problem structure. Since 

the PERT problem is #P-complete, we expect that we will have to enumerate some 

structure whose number grows exponentially in the size of the network. PIVOTS 

enumerates almost all the spanning arborescences of the network. The question then arises 

as to whether there is something better to enumerate. The two most obvious candidates 

were minimal source-to-sink paths and minimal source-to-sink cuts. However, complexity 

analysis indicates that we will not succeed by enumerating minimal source-to-sink paths 

unless P=NP. Although the evidence is weaker, it seems unlikely that we can devise an 

algorithm that computes characteristics of the distribution of project duration without 

enumerating all possible states of the project, which cannot be done in time polynomial per 

cut. Thus, enumerating minimal source-to-sink cuts does not appear to be a promising 

approach.

Hagstrom (1990) concluded that if we wish to look for algorithms that significantly 

improve on PIVOTS, we should think of enumerating some combinatorial structure in the 

network other than minimal source-to-sink paths or cuts, or spanning arborescences. We 

must expect that in some cases the number of instances of this structure will be 

exponentially more than the number of minimal paths. Similarly, it seems likely that in 

other cases the number of instances of this structure will be exponentially more than the 

number of minimal cuts. In order to improve on PIVOTS, the number of instances of this 

structure should be less than the number of spanning arborescences.
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Comparisons

This ordered-recursive-conditioning algorithm, which requires discrete activity duration 

distributions, seems to be the best presently available for exact computation on dense 

PERT-type networks, although it is outperformed by Martin’s (1965) method on sparse 

networks. It may be difficult to find an algorithm with better worst-case performance. 

However, since the rapid growth in computation time with the size of the network limits the 

use of the algorithm to relatively small networks, Hagstrom (1990) recommended approxi

mation reduction methods when the computation budget/computational capability is limited.

2.6 Simulation

Monte Carlo simulation was first proposed as a reduction method for stochastic 

networks by VanSlyke (1963). Early network simulation programs were written in 

FORTRAN and GASP (Pritsker and Kiviat, 1969). Following the introduction of GERT 

(Pritsker and Happ, 1966; Pritsker and Whitehouse, 1966), Pritsker developed a family of 

GERT simulation (GERTS) tools - GERTS III, GERTS IIIC, GERTS IIIR, Q-GERTS - 

to accommodate cost and resource information and queues in stochastic networks 

(Whitehouse, 1973; Pritsker, 1978). Burt and Garman (1971) developed conditional 

sampling in an effort to reduce the computer run time requirements of network simulations. 

Today, stochastic networks can be simulated using either general purpose simulation 

languages, such as SLAM (Pritsker, 1986), or specially written software, such as STARC 

(Badiru, 1991a and 1991b).

Simulation is an effective approach to approximating the throughput distribution of a 

stochastic network, especially if the network has mixed types of activity duration 

distributions. Employment of simulation requires the user to exercise a simulation model 

through sufficient replications to insure that steady state conditions have been attained with 

respect to the characterization of the throughput distribution, usually as evidenced by
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stability in the first two moments (mean and variance). Multiple simulation replications are 

required, since in each replication a different value may be assigned to each activity's 

duration based on its designated probability distribution, leading to a different realization of 

the network throughput. As networks become larger and more complex, increased 

numbers of replications are required in order to properly characterize the steady state 

behavior of throughput distributions.

2.6.1 Limitations of Simulation

Historically, simulation has enjoyed somewhat limited use in both the commercial and 

government sectors. This has been attributed primarily to four factors (Moore and Clayton, 

1976; Wiest and Levy, 1977; Schonberger, 1981):

1. Lack of technical knowledge about network simulation. 
For example, no generally acceptable objective criteria 
have been developed for defining the attainment of a 
steady state. It is possible, due to the complex 
behavioral character of stochastic networks with large 
numbers of nodes and the fact that autocorrelation 
problems can result from the computer generation of 
random numbers, that a false steady state may be 
interpreted as a true condition.

2. Degree of specialized quantitative knowledge required to 
obtain and interpret simulation results. Due to a lack of 
this specialized knowledge, the majority of potential 
program management users are frequently uncomfortable 
making decisions based primarily on simulation results. 
In some cases, the manager may even be restricted in his 
usage of simulation results unless he can obtain a degree 
of expertise either personally or through an analyst.

3. Analyst's frequent inability to alleviate the manager's 
feelings of uneasiness. Only an approximated 
confidence interval on the mean throughput can be 
constructed from simulation results. Some simulation 
programs can display crude frequency histograms. 
However, large variances may exist in the determination 
of the upper and lower bounds of the throughput 
distribution. These variances degrade the ability of the 
manager to employ simulation results in planning 
accurately for resource consumption. Greater accuracy 
is available from simulation at the expense of increased
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numbers of replications. In the cases of larger and more 
complex networks, however, the cost effectiveness of 
more accurate information can very rapidly become 
questionable.

4. Simulation results are not worth their cost, since work 
tends to expand to fill the time allocated to i t  
(Parkinson’s Law); thus, even a  “true” simulated project 
completion date would likely be exceeded as workers 
and managers aim toward this new, lengthened deadline.

False Steady State

There are two generally accepted types of simulations, terminating and steady-state:

1. A terminating simulation is one for which the desired 
measures of system performance are defined relative to 
the interval of simulated time [0, TE], where TE is the 
instant in the simulation when a specified event E  occurs.
Te may be a random variable. The event E  is specified 
before the simulation begins.

2. A steady-state simulation is one for which the measures 
of performance are defined as limits as the length of the 
simulation goes to infinity. Since there is no natural 
event E  to terminate the simulation, the length of one 
simulation is made large enough to get “good” estimates 
of the measurement quantities of interest. Alternatively, 
the length of the simulation could be determined by cost 
considerations. At the point in time when the transient 
distribution of a measurement quantity of interest is 
essentially no longer changing with increases in the 
number of simulation runs, we say, intuitively, that the 
process being measured is in “steady-state.” Thus, 
steady state does not mean that the actual values of the 
measurement quantity of interest in a single realization 
(run) of the simulation become constant after some point 
in time, but that the distribution of the measurement 
quantity of interest becomes invariant (Law and Kelton,
1982)

An activity network simulation program performs a simulation of a network by 

advancing time from event to event. In simulation parlance this is termed a next-event 

simulation. There are three events associated with the simulation of an activity network: the 

start of the simulation, the end of an activity, and the completion of a simulation run of the 

network. The start event causes all source nodes to be realized and schedules the activities
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emanating from the source nodes according to the output type of the source node, either 

deterministic or probabilistic. In the former case, all activities emanating from the node are 

scheduled; in the latter, only one of the activities emanating from the node is scheduled. 

“Scheduling an activity” means that an “end of activity” event is caused to occur (placed on 

the event calendar) at some future point in time. The simulation then proceeds from event 

to event until the condition is obtained which indicates that the simulation of the network is 

completed: the realization of a specified number of sink nodes. The process is then 

repeated for a specified number of simulations (replications). (Whitehouse, 1973).

The simulation analyst specifies at the beginning of a network simulation experiment 

the number of simulations (replications) to be made with the simulation model. Each 

replication produces a simulation sample value of a performance measure of interest. These 

simulation sample values are accumulated to build a “picture” of the distribution of the 

performance measure. The picture is often presented as either a frequency histogram of the 

simulation sample values or as a set of computed sample statistics, usually the mean and 

standard deviation (or variance) and possibly some higher order moments, or both. The 

accuracy of the picture is clearly a function of the number of replications conducted.

Hence, in terms of output analysis, activity network simulations are a composite type 

of simulation: each replication of the network model is terminated when the specified 

number of sink nodes are realized, so each replication is a terminating simulation. The 

network model is exercised for a specified number of replications which has been chosen 

sufficiently large so that the accumulation of simulation sample values results in a 

reasonably-to-very accurate picture of the distribution of a performance measure. The 

objective is to accumulate sufficient simulation sample information so that the picture of the 

distribution of the performance measure does not measurably change with increases in the 

number of replications, that is to say, so that the distribution of the performance measure 

becomes invariant; so the simulation experiment is a steady-state simulation.
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Steady state, then, is the condition attained in a simulation when the process exhibits a 

stationary behavior as characterized by its parameters; false steady state is the apparent but 

erroneous appearance of a steady state (Pritsker, 1986). In an activity network simulation, 

a false steady state occurs when the picture of the distribution of a performance measure 

built from the accumulated simulation sample values is inaccurate, i.e., when this picture 

has not yet achieved invariance with respect to increases in the number of replications.

For project management networks, the performance measure of interest is typically the 

throughput distribution. Because of Central Limit Theorem results, the throughput 

distribution for most activity networks with even only modest numbers of nodes and 

activities is normal or near-normal, regardless o f the types of distribution functions 

describing the activity durations. Consequently, the shape of the simulation-developed 

picture of the distribution, such as displayed in a frequency histogram, cannot be looked to 

as an indicator that an apparent steady state is actually false. The danger in a false steady 

state lies in the simulation sample statistics being inaccurate estimators of the throughput 

distribution’s parameters, particularly the mean and standard deviation (or variance), since 

these parameters are of greatest utility to managers in understanding and controlling project 

behavior. Consequently, the trick in project management network simulation is specify a 

sufficiently large number of replications to insure that the simulation-developed picture of 

the throughput activity resource consumption distribution is accurate, i.e., to insure that the 

simulation achieves a true steady state with respect to the throughput distribution. Clearly, 

the greater the number of replications, the lesser the risk of mistaking a false steady state 

for a true one. However, for large activity networks, large numbers of replications mean 

high run times and costs, so there is definite trade-off between the risk of a false steady 

state and the price to be paid to conduct the simulation experiment

Project management networks are PERT-type networks, i.e., they are acyclic, directed 

networks. As such, the risk of a false steady state in the simulation of a project
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management network is, generally speaking, less - some might argue considerably less - 

than the risk of a false steady state in the simulation of a generalized activity network 

(GAN), i.e., an activity network with both stochastic (probabilistic) activity resource 

consumption distributions and probabilistic branching (Elmaghraby, 1977). The presence 

of probabilistic branching in GANs increases the risk of simulation false steady states over 

that for acyclic, directed networks. This is easily understood through the following 

simplistic example. Consider a GAN with a node with two emanating activities: one 

activity has a very high duration when the activity is taken, but a very low probability of 

being taken; the other activity is just the reverse, i.e., has a very low duration when the 

activity is taken, but a very high probability of being taken. The expected number of 

replications before the first activity is taken will be quite large, and during most simulation 

experiments the second activity will be repeatedly taken before the first activity is taken for 

the first time. A performance measure such as average network duration, will be initially 

estimated too low by the corresponding simulation sample statistic, then too high when the 

statistic spikes the first time the first activity is taken, etc. A large number of replications 

will be required before the transient distribution of the performance measure becomes 

invariant, i.e., before the simulation reaches steady-state. If the transient distribution of the 

performance measure is sampled too early, it will appear to have stabilized at a lower level 

than the true value of the average resource consumption; this is a false steady state. 

Fortunately, project management networks do not evidence such pathologic behavior. A 

false steady state in the simulation of a project management network will usually occur only 

when the network has a large number of nodes and activities with stochastic distribution 

functions with high variabilities. A large number of replications will be required before the 

throughput distribution achieves steady-state. However, if the distribution is sampled too 

early, a false steady state may be observed.
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2.6.2 Current Status of Network Simulation

The focus of recent research on stochastic networks has closely paralleled the 

recommendations of Schonberger (1981) in two primary areas: the distribution of project 

completion times, and attempts to identify the paths and activities most likely to become 

critical (Ragsdale, 1989). Simulation is involved in one approach in each of these areas. 

“Intelligent” Simulation

Standard PERT techniques tend to result in overly optimistic estimates of project 

completion times. Early attempts to deal with this problem were based on Monte Carlo 

simulation techniques and spurred the development of specialized networking languages 

such as GERTS and SLAM. Schonberger (1981) noted that it can be very costly and time 

consuming to use these tools. Cook and Jennings (1979) showed that accurate 

approximations to Monte Carlo simulation results can be achieved less expensively using 

“intelligent” simulation methods. Their study analyzed three heuristics which can be used 

to estimate a network’s distribution of completion times/costs. Essentially, each heuristic 

attempts to identify paths in the network which have little or no chance of becoming critical. 

These paths are then discarded, simplifying the network and reducing the simulation 

problem. They gave empirical evidence indicating that PERT estimates of completion times 

may be anywhere from 8 to 30 times less accurate than their best “intelligent” simulation 

method. Most recently, there has apparently been no further investigation of “ intelligent” 

simulation methods applied to stochastic networks, a situation which Ragsdale (1989) has 

found disappointing.

Identifying Critical Paths and Activities

Identifying the paths most likely to become critical is important not only in estimating 

the completion time distribution but also, and perhaps more importantly, for planning and 

control purposes. Criticality indices attempt to provide a quantitative tool that identifies the 

“complex, delay-prone segments” of a network which Schonberger (1981) advised should
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be the focus of managerial attention. The criticality index of a path is defined as the 

probability that the path’s duration exceeds the duration of all other paths in the network. 

Knowing the criticality index of each path in the network would provide valuable 

information as to which paths are most critical. Similarly, if one particular activity 

appeared in many of the most critical paths, the activity itself may be considered critical. 

The criticality index of an activity is then defined as the sum of all path criticality indices of 

paths in which the activity occurs. To estimate path criticality indices, simulation is a tool 

which can be used to determine the relative frequency with which each path is critical. In 

addition to long simulation run times, the task of uniquely identifying and recording which 

path is critical in each repetition of the simulation is now added. Ragsdale (1989) 

concluded that this quickly becomes impractical for problems of “realistic size.” Dodin 

(1984) suggested a procedure for estimating the rankings of the path criticality indices for 

the K most critical paths in the network. Rather than simulating the entire network 

repeatedly, Dodin suggested using simulation to determine the K  “stochastically 

dominating” paths entering each successive node in the network. The end result of this 

process is a  list of the K most dominating paths entering the sink node - or the K  most 

critical paths. These critical paths, ordered by their simulated expected length, approximate 

the rankings of their criticality indices. (Dodin also developed analytic methods to 

approximate activity and node criticality indices and to identify the K most stochastically 

dominating paths; these are discussed in Sections 2.8.2 and 3.4.2.)

2.6.3 Recent Simulation Approaches to Network Analysis

Badiru (1991a and 1991b) presents simulation as a useful analytical tool for project 

network analysis and a powerful tool for evaluating many of the decision parameters 

involved in project management. To illustrate the effectiveness of computer simulation for 

project planning, he and G. E. Whitehouse co-developed the PC-supportable STARC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

(stochastic time and resource constraints) and STARC 2.0 computer programs, which 

simulate project networks and perform “what iP’ analysis of projects with stochastic activity 

times and resource constraints. STATGRAPHICS software is used in conjunction with 

STARC to illustrate some of the post-simulation statistical analyses that can be conducted. 

STARC’s capabilities are a subset of SLAM’s, and STARC’s only advantages over SLAM 

are its customized output and simplicity of model construction and input

Avramidis, Bauer, and Wilson (1991) investigated several procedures for using path 

control variables to improve the accuracy of simulation-based point and confidence interval 

estimators o f the mean completion time of a stochastic network. Because each path control 

variate is the duration of the corresponding directed path from source to sink, a vector of 

selected path controls has both a known mean and covariance matrix. They incorporated 

this information into estimation procedures for both normal and nonnormal responses. 

Their experimental results show that although large improvements in accuracy can be 

achieved with some of these procedures, the confidence interval estimators for normal 

responses may suffer loss of coverage probability in some applications.

Simao and Powell (1992a, 1992b) introduced a discrete-time approach for simulating 

stochastic, transient networks of bulk queues that often arise in consolidation networks. 

They focused on the simulation of stochastic, transient networks that involve the 

consolidation of customers on vehicles, originally motivated by the development of a 

computationally efficient method for simulating the performance of less-than-truckload 

motor carrier networks. They presented the state variables and equations required to model 

the problem, introduced a  set of approximations to produce a computationally tractable 

algorithm, and described the results of extensive numerical experiments which tested the 

accuracy of the approximations and the overall efficiency of the procedure. Their work 

illustrates the use of numerical approximation methods to simplify network analysis, 

specifically, to simplify the simulation of a restricted class of transportation networks.

with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

67

2.7 Performance of Network Reduction Techniques

Since we have proposed to develop a new, more capable, and more efficient numerical 

approximation technique and then to validate its performance by exercising algorithms 

based on the technique combined with the leading network reduction methods and 

comparing the results with the reported performance of their competitors, we must have a 

rigorous strategy for the validation and performance comparison of network approximation 

and reduction techniques and the tools necessary to implement that strategy. Our 

performance validation strategy is based on design of experiments; the tools necessary to 

implement the strategy are the random generation of test networks and network simulation.

2.7.1 Design of Experiments

Rigorous statistical design in computer experiments has become an area of increasing 

importance in algorithm testing. Empirical testing o f an algorithm should begin with the 

identification of the characteristics of the problem which influence the performance of the 

algorithm in solving the problem. One then generates test problems with sufficient 

variations in those characteristics so that any and all peculiarities in the algorithm’s 

performance can be observed and extracted. The behavior of the algorithm should then be 

explained by statistical methods as well as analyses of the algorithm itself. The framework 

for the controlled execution of this testing is design of experiments (DOE).

Hung and Divoky (1988) developed a DOE approach for comparing the computational 

efficiency of five different algorithms to determine the shortest path through a network. 

First, the control or independent variables that define a network were identified: the number 

of nodes, the number o f arcs, and the network structure, which they described as the 

incidence function which defines the end node of each arc. Since each arc has a weight, the 

distribution of arc weights was characterized by another group of independent variables: 

type of distribution, and parameters) of those types o f distributions. A 4-factor factorial
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design was constructed on the independent variables (numbers of nodes and arcs, arc 

weight distribution type and mean (or variance)). For each cell in the design, a network 

was generated using a Hamiltonian path and random assignment of left-over arcs to nodes. 

Fifty different source nodes were randomly selected for the network in each cell, and the 

Five different shortest path algorithms were exercised, starting once from each of the source 

nodes. The experimental or dependent variable was the performance of each algorithm 

against the test networks as measured by CPU time; number of iterations and cost of 

computation and computer storage were considered as performance measures, but rejected 

in favor of CPU time. The entire process was repeated for 240 different combinations in 

the factorial design (5 numbers of nodes, 4 numbers of arcs, 3 types of arc weight 

distributions, and 4 parameter values for each of those distributions). The CPU times 

required by the algorithms to determine the shortest paths through the test networks not 

only permitted head-to-head performance comparisons between the algorithms, but also 

revealed some theretofore unknown properties of some of the algorithms.

Dodin (1985a) employed a similar, but somewhat less rigorous approach in evaluating 

the performance of the sequential approximation and reduction method. We discussed the 

efficiency of sequential approximation in Section 2.5.2 [above]. Dodin generated “strongly 

randomized networks” for a small number of combinations of number of nodes and 

number of arcs. Seven different types of activity duration distributions were considered. 

The activities of each of the test networks were assigned either the same type of duration 

distribution, or a randomly selected type. The parameter(s) of each activity duration 

distribution were then randomly selected. Each test network was reduced by sequential 

approximation and approximated by Monte Carlo simulation, and the results compared with 

four performance measures. Since not all combinations of network size and structure, and 

activity duration distribution type and parameter(s), were considered, Dodin’s performance 

evaluation of sequential approximation was an incomplete factorial design. While the
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computational experience of the algorithm at the design points (cells) considered was in 

agreement with its expected performance based on the theory of its construction, Dodin’s 

testing failed to exercise the algorithm across its operating envelope. Hence, although there 

has been no reason as yet evidenced to believe that the algorithm does not perform both as 

expected and desired in reducing stochastic networks, it has not been completely validated. 

To do so requires a more robust design space than that of Dodin's evaluation.

Dodin (1993) provided further insight into the randomization of parameters which is 

required in testing the dependency of a network reduction method’s efficiency on the 

parameters of the activity duration distributions. A method that works well when the 

variances of the activity duration distributions are small may not be efficient for larger 

variances. Similarly, a method that is efficient when the activity durations are all of one 

type of distribution, for example, when they are normally distributed, may not be efficient 

when they are all of another type, for example, when they are exponentially distributed. 

Therefore, the parameters need to be generated in a manner compatible with the nature of 

the problem under consideration. Unfortunately, randomizing the parameters cannot be 

standardized like the structure of the network or the number of arcs; each structure or value 

of the number of arcs can have an equal probability of being selected, but the parameters 

can have infinite realizations and can often depend on the nature of the decision problem. 

Consequently, randomization of the parameters of the activities does not have an “equal 

probability” implication; rather, it is accomplished in a manner that reflects the variability of 

the parameters under consideration and the reality of the decision problem.

2.7.2 Random Network Generation

To derive reliable results in the efficiency tests of stochastic network reduction 

methods, it is desirable, if not mandatory, that the activity network models (size, structure, 

and parameters) included in the computational experiments be randomly generated
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(Elmaghraby and Herroelen, 1980). If the network size and structure are given, then the 

randomization is limited to the parameters of the activities. This is the case in most of the 

published literature; the set of representative test problems is either taken from existing 

problem sets described in the literature, typical of which is the set of 110 test problems 

designed by Patterson (1984) for resource constrained scheduling, or individual models 

designed by individual authors. Examples of the latter are the network in Figure 4 in 

Kleindorfer (1971), which was used by Shogan (1977) and Dodin (1985c), and networks 

designed and used by Alvarez-Valdes (1988), Christofides, Alvarez-Valdes and Tamarit 

(1987), Kurtulus and Davis (1987) and Talbot (1982). Demeulemeester, Dodin, and 

Herroelen (1993) refer to this kind of activity network model, which is limited to the 

random generation of the parameters of the activities, as “weakly randomized networks.” 

Sometimes all that is required for efficiency testing is a set of weakly randomized networks; 

that is the case, for example, if one wishes to examine the efficiency of a given method 

when triangular or diamond-shaped networks are used. When the randomization is 

extended to include the size and structure of the network, where the structure is selected 

with equal probability from the space of all feasible structures, then Demeulemeester et al. 

(1993) refer to it as a “strongly randomized network.”

The size of a stochastic network is determined by the number of nodes, N,  and the 

number of activities (arcs), A. A  network with N  nodes can have from N - 1 up to 

N( N  -1 ) / 2 arcs. An approximation and reduction method that works well for a network 

with low density (the ratio of arcs to nodes is small) may not be efficient for a dense 

network. Therefore, networks with various densities must be used in efficiency and 

comparison testing. As a result, the number of arcs for a given N  needs to be generated 

from the space of all arcs which ranges from V - 1 to N ( N - l )  / 2 arcs. Then, once the 

size of the network is determined, the structure of the network needs to be generated at 

random from the space of all networks with the given size.
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Demeulemeester et al. (1993) presented an algorithm which generates strongly 

randomized activity networks, based on the working papers of Herroelen and Caestecker 

(1979) and Dodin (1980). The following notation was used in their development:

G(N, A) -  activity network with N  nodes 
and A arcs.

a;j -  arc(ij), the activity starting in 

node i and ending in node y; the 
nodes are numbered such that 
i is less than y, for i ranging from
1 to N - 1  and y ranging from
2 to N.

IN(i) -  in - degree of node i, the number 
of arcs incident to node i.

OUl\i) -  out - degree of node i, the number 
of arcs emanating from node i.

6(i, j )  -  indicator equaling 1 if there is an 
arc connecting node i to node y, 
and 0 otherwise.

L -  number of generated arcs, generated 
either to be deleted or added .

[aj -  largest integer less than or equal to 
the real value of a

U{o, b) -  uniform distribution with a lower 
limit of a and an upper limit of b.
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For a given N  and A,  the objective is to generate G(NyA) from the space of all activity 

networks with the given iVand A. Either of the two following procedures can be used to 

guarantee the complete randomization of G(N, /I): the deletion method (DM) or the addition 

method (AM). Proofs are given in Demeulemeester et al. (1993).

Deletion Method

The deletion method starts with a completely connected acyclic network, i.e., the upper 

triangle of the adjacency matrix is filled with ones, or 6(i,y) -  1 for all entries with i < j . 

Therefore, DM starts with a network with N ( N - l ) / 2  arcs and then deletes 

K  -  N(N - 1 ) 1 2 -  A  arcs subject to the following restrictions:

1. The network has one start and one end node.
2 . lN(i) 1 for all / -  2,3,. .^N,  and 

OUI\i)t t  1 for all i -  1,2,..., N - I
3 . The generated network G(N,A ) is completely 

randomized, i.e., all feasible networks possessing the 
count N  and A are equally probable.

The DM proceeds as follows, as depicted in the flowchart in Figure 20:

Step 1. Initialization:
Set
6 ( / ,y ) - l fo r a l l / - l ,2 , . . . , iV - l ,  

andy - i  + 1,..,A(
OUT\i) -  N -ifo ra ll i -1 ,2 ,.., 1
/7V(i) -  / - 1  for all / -  2,..., W 
L  - 0  and K  -  N(N  -1) / 2 -  A

Step 2. Generating the arc to be deleted:

i. Generate a random value; denote it by Y  ~ £7(0,1) and let
y-[Ar + 0 . 5 - , ^ ( W - l ) T  + 0.25j

ii. If OUT(j) -1  or IN(k) -  1 for all k  > y, then go to Step 
2i; otherwise, continue.
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St ar t

I R e a d  N&A I

Initialize: S e t  
5 (i,j)=1 lor all l<j 
O U T  (i)=N-l lor all I^N 
IN (i)=i-1 lor all i*1 
L = 0 a n d  K =N (N -1 ) /2 -A

G e n e r a t e  Y - U  (0 ,1 )  a nd  
c a lc u la te  j a s  in (b.i) a b o v e

•''OUT (j)=1 o r '  
IN (k) =1 lor all

Y e s

N o

G e n e r a t e  Y - U  (0 ,1 )  and  
c a lc u la te  k a s  in (b.lii) a b o v e

Y e s
IN (k) =1

N o

Y e s

N o Y e s

L<K?

N o

j  Print G (N ,A ) j  

(fstop^)

Figure 20. The deletion method.
[Adapted from Demeulemeester et al. (1993)]
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iii. Generate another random value Y ~U(0,1) and let 
k - [ j  + l + Y ( N - j ) \

iv. If lN(k) -  1, go to Step 2iii; otherwise, the arc (j , k ) is a 
candidate for deletion.

Step 3. Deletion:
If d(j ,k ) -  0, go to Step 2i; otherwise, set 
6(j,k)  -  0
O U T ( j ) - O U T U ) - l  
IN(k) -  IN(k) - 1 and 
L - L + l

Step 4. Termination:
If L < K , go to Step 2i; otherwise, a completely randomized 
G(N,A) is generated.

Addition Method

This procedure does the reverse of the DM; it starts with an adjacency matrix with 

d(j ,k)  -  0 for all i < j  except 5(1,2) -  d(N -  l ,N)  - 1 ,  which guarantees one start and 

one end node. The procedure then proceeds to generate A -  2 arcs subject to the same 

three restrictions stated for the DM. The AM deals with two sets of arcs. The first set has 

the feasibility arcs which might be needed to guarantee restriction ii; these may range from 

zero to 2N  -  6 arcs. The second set has the remainder of the arcs, which are referred to as 

free arcs\ F  denotes the set of free arcs. The AM generates as many as possible of the free 

arcs. They are generated at random from the set of N(N - I )  1 2 - 2  arcs. As more free 

arcs are generated, more nodes become feasible, i.e., they become incident into and/or 

emanating from nodes. Consequently, the first set of arcs, the feasibility arcs, may 

decrease and F  may increase. If F reaches zero and there are nodes (other than 1 or N)  

with zero in-degree or zero out-degree, then the AM generates the arcs necessary for 

feasibility. This step may result in generating more than A arcs; this case could happen in 

activity networks where A s2 /V -4 . The DM is used to delete the extra
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/ R e a d  N&A j

©

Initialization: Set
6 (U )= 0  lor all l< j=2 .3  N
8 (1 ,2 )= 5  (N-1,N)=1
O U T  (i)=0 for 1=2,3.......N -2
IN (i)=0 for i= 3 ,4 .......N-1
O U T  (1 )= O U T  (N-1)=IN (2)=IN  (N)=1  
L=2, m = n = N -3  a nd  F = A -L -m -n

Y e s N o

L o c a t e  a  n o d e  k with IN(k)=0,  
a n d  g e n e r a t e  a  n o d e  |<k s u c h  
that j=U +{k -1 )Y J

L o c a t e  a  n o d e  ) with O UT G)=0.  
a n d  g e n e r a t e  a n o d e  k su c h  
that  k= lj+1+(N-|)YJ

S X ^ Y e s U s e  th e  DM to d e l e t e  
L - A  a r csA7 ' *

[ N o

G e n e r a t e  a j and k at r a n d o m  
e x a c t ly  a s  In (b.i) a n d  (b.iii) 
a b o v e ,  resp e c t iv e ly

S e t  5 (j.k)=1 
O UT(j)=OUT(j)+1  

IN(k)=IN(k)+1 and  
u p d a te  L, m, n a n d  F

/  Print G (N ,A ) j
T
©

Figure 21. The addition method.
[Adapted from Demeulemeester et al. (1993)]
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arcs at random. Figure 21 summarizes the steps of the AM.

Clearly, either method can be used to generate a random G(N,A). The DM deletes 

N (N - I )  12 -  A arcs while the AM adds A - 2  arcs. Consequently, using the DM in 

nondense networks can be time consuming; for example, in an activity network with 

N  -  100 and A -  150, using the DM requires the deletion of 4,800 arcs, while the AM 

requires adding 148 arcs. Therefore, Demeulemeester et al. (1993) recommend the use of 

the AM for nondense networks and the DM for dense networks. More specifically, they 

recommend the use of the DM if A a K, where K  -  N (N  -  1) / 4, and the AM otherwise. 

This rule is based on the number of calculations required by each method to generate the 

required network. The quantity K is half the arcs in a completely connected network; 

therefore, if A> K,  then one generates the network by deleting fewer than K  arcs, which 

is more efficient than adding A > K  arcs.

Generating A Set Of Strongly Random Activity Networks

When a set of strongly generated activity networks is needed to test a network reduction 

method, this means (1) the generation of a set of (N,A)  pairs, where for each pair several 

network structures are generated using either the DM or the AM, and (2) the generation of 

corresponding activity parameters. With respect to the number of nodes, N  is either 

specified or drawn randomly from a range depending on the reduction method to be tested. 

Once N  is specified, then A , the number of arcs, is either specified or randomly generated 

from the range [N, N (N  - 1) / 2]. Normally, a number of A values will be used for each 

N.  Considering the number of structures associated with a network size (N,A ), then 

treating all the values of A in the above range in an equally likely manner is not an accurate 

randomization of A.  Table 7 shows the number of feasible network structures for some 

different combinations of N  and A. A more accurate alternative would be to associate a 

weight with each value of A proportional to the number of structures, G(N,A), satisfying 

the size (A, A), i.e., determine the distribution of A given N.  However, this alternative
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requires the enumeration of the structures G(N,A) for all values of A in the above range, a 

task that is very difficult for nontrivial values of N . Consequently, Demeulemeester et al. 

(1993) developed a heuristic procedure to approximate the distribution of A .

Table 7 shows that for N - 4  the probability distribution of A is symmetric. 

However, for N >4 the number of structures increases sharply and the probability 

distribution of A given N is not completely symmetric; it is close to being normal with a 

slight skewness to the right. Figure 22 plots the ranges of A for different values of N. 

The dotted curve represents the mean of the ranges of the A values. However, Table 7 

indicates that the actual mean of A lies below the mean of the ranges. Therefore, the mean 

of the ranges can be adjusted and used to approximate the mean of A. Set

La ~ N - la n d  UA -  N{N -  1) / 2 

Then the mean of A is approximated by:

(LA+UA) (Ua - L a )2 
"  2 500

and its standard deviation is approximated by:

Table 7. The Number of Feasible Network Structures for Different Combinations 
of N  and A. [Adapted from Demeulemeester et al. (1993)]

N -
A

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 11
3 1 1
4 1 4  4 1
5 1 1 1 33 42 26 8 1 -

6 1 26 171 507 840 865 584 262 76 13 1
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20

U pper b o u n d  l/„=/V(N-1)/2

I <Ua*La)/2

f j  ad ju sted  lo r sk e w n e ss

Low er b o u n d  L,,=AM

Figure 22. The random variable A as a function of N.
[Adapted from Demeulemeester et al. (1993)]

For a given N , an A value is obtained by drawing a random value from a normal 

distribution with the above mean and standard deviation. Given the pair (N,A),  then either 

the DM or the AM can be used to generate a random network structure.

Demeulemeester et al. (1993) reported that CPU time requirements for generating 

strongly random activity networks are negligible. Table 9 shows the CPU time 

requirements on a VAX 8820 minicomputer for the 25 activity networks specified in Table 

8. The activity network sizes given in Table 8 were designed to capture the worst and best 

case scenarios for the DM and the AM. The first three columns of Table 8 require the use 

of the AM because A < N(N  -1 ) / 4. Column 3 has the worst case for the AM because A 

is close to the border point recommended for use of either the AM or the DM. Column 2 

has what is expected to be the best case for the AM because A is close to the value where 

the AM may not generate more than A arcs, i.e., the DM will not be used within the AM 

(see Figure 21). Column 1 has a bad case for the AM because there is a higher chance of
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using the DM to delete the extra arcs generated by the AM. With respect to the DM, there 

are two cases: (1) the best case, represented by the A values of column 5, where the 

number of arcs to be deleted is very small, i.e., the network is almost completely 

connected, and (2) the worst case, represented by column 4, where the arcs to be deleted 

are very close to the maximum, which is half of the arcs in a completely connected 

network.

Table 8. Network Sizes Used in the Efficiency Test of the Random Activity 
Network Generators. [Adapted from Demeulemeester et al. (1993)]

N

Addition Method Deletion Method

1.57V I N

Close to 
N(N- \ ) f  

4 -  5

Close to 
N( N- l ) /  

4 +  5

Close to 
N ( N -  1)/ 

2

10 15 20 21 25 40
20 30 40 90 100 175
30 45 60 210 220 400
50 75 100 600 620 990
60 90 120 875 900 1500

Table 9. CPU Time Requirements in Seconds for Activity Networks of the Sizes 
Given in Table 8. [Adapted from Demeulemeester et al. (1993)]

Addition Method Deletion Method

N 1.5 N I N

Close to 
N(N -  1)/ 

4 - 5

Close to 
N { N -  1)/ 

4 +  5

Close to 
N ( N -  1)/ 

2

10 0.012 0.010 0.010 0.012 0.005
20 0.019 0.027 0.051 0.031 0.019
30 0.032 0 .043 0.180 0.141 0.027
50 0.043 0.059 0.291 0.280 0.138
60 0.051 0.093 0.426 0.435 0.221
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Demeulemeester et al. (1993) concluded from Table 9 that the CPU time requirements 

do not result in an unacceptable penalty for using the random network generator. The CPU 

time required for generating any of the 25 networks of Table 8 was less than 0.05 of a 

second on a VAX 8820. Very dense networks required less time to generate than less 

dense networks because, using the DM, fewer arcs are generated; compare, for example, 

columns 5 and 4 of Table 9, where both columns required the DM and networks of column 

5 are more dense than those of column 4.

The worst-case scenario for both methods is represented by columns 3 and 4 of Tables 

8 and 9. In column 3 the AM was used to generate close to N(N  -  1) / 4 arcs, while in 

column 4 the DM was used to generate also close to N(N - 1) / 4  arcs. First, the CPU 

time requirements in both cases were compatible, which reaffirmed the rule 

Demeulemeester et al. (1993) recommended on when to use either method. Second, the 

CPU time requirements for using either method could not be worse than these two 

respective cases. As a rule, generating an arc in a network, with a density greater than 1.5, 

using either method required less than 0.0005 of a second. Generating a network of size 

(60,1500) required less than 0.30 of a second.

Activity networks with low density, say between (N - 1)/ N  and (2N -4)14,  may 

require more time to generate. This is due to two factors. First, these networks use the 

AM, and due to the feasibility constraints, more than A arcs may need to be added. In this 

case, the DM is called to delete the extra arcs. Second, in using the DM to delete the few 

extra arcs many nodes (start and/or end) may be generated and neglected due to the 

feasibility issue, i.e., the DM keeps searching for an ordered pair, arc (/, j)  with 6(i,j) -  1 

in a very sparse network, which can be more time consuming. As the density of the 

network converges to (N  -1 )  / N, the efficiency of both methods decreases. (Demeule

meester etal., 1993)
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2.8 Large Network Approaches

When stochastic project management networks are large, reduction methods may 

require lengthy computer run times and complex network data management/storage. Two 

approaches have been considered for handling large networks: network decomposition, and 

the K  most critical paths. The idea behind network decomposition is quite simple: break a 

large network apart into subnetworks which can be separately reduced, then combine the 

results. As it is unrealistic to expect the network user to effect a  workable decomposition, 

research has focused on aggregation/disaggregation techniques which could be used to 

identify the subnetworks. This has met with limited success, and the K most critical paths 

has emerged as the more promising approach.

2.8.1 Network Decomposition 

Aggregation/Disaggregation T echniques

Rogers, Plante, Wong, and Evans (1991) surveyed the numerous aggregation and 

disaggregation techniques which have been developed for optimization applications. 

Disaggregation analysis is defined as the reverse of aggregation analysis, i.e., where the 

results of solving a reduced model are used to estimate the solution of the original model or 

to cluster levels of interest for the model under consideration. The issues of disaggregation 

analysis are relatively less complex than their antitheses in aggregation analysis. The entity 

(entities) to disaggregate will naturally be identical to the entity (entities) that are clustered 

and combined. The level of interest for most problem settings is at the level of the original 

problem; thus, reversal procedures for similarity measures and cluster procedures are not 

required. One important disaggregation approach is the method of dissection, which is the 

antithesis of the method of combination; it is analogous to fixed-weight combination. 

Aggregation and disaggregation techniques may also allow for a reduction of the 

computational time required to solve problems of optimality. The entire process of
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aggregation and disaggregation may be embedded in an iterative procedure to successively 

aggregate data, solve small problems, and disaggregate data, which are referred to as 

iterative aggregation-disaggregation (IAD) techniques. The authors discuss a number of 

IAD techniques, with applications to linear programming (classical transportation problems 

and extensions; multi-commodity distribution models; production, planning and 

scheduling), nonlinear programming (transportation problems, production and scheduling, 

location/allocation methods, and accounting), integer programming, dynamic 

programming, and Markov decision processes. In the arena of network applications, 

Hackman and Leachman (1989) are referenced for a study of multiproject planning models 

involving clustering parallel detailed activities that utilize the same mix of resources. Work 

flow among aggregates was defined to be continuous time and rate based, leading to a 

linear programming formulation and hence to an example of aggregate modeling. Of 199 

references cited by Rogers et al. (1991), only two by Francis address aggregation/ 

disaggregation of acyclic, directed networks.

Aggregation/disaggregation techniques in PERT/CPM networks.

Francis (1985) developed an aggregation method based on network flows to solve 

the capacitated transshipment problem. The method requires an initial partition , A1, of the 

original problem network, N°. The ^'-network problem is an aggregation of the original 

problem. An iterative procedure uses at the r^1 step a basic feasible solution of the N r+1- 

network problem to “jump start” a basic solution for the N'*1 -network problem, where the 

A/r+1 -network is obtained from the Nr -network by a refinement of the N r -partition 

obtained by splitting one of the partition subnetworks into two subnetworks. When the 

N r -partition can be refined no further, it is the original problem network, N°, and the 

current basic feasible solution solves that original problem. Francis (1986) applied his 

method to the analysis of PERT/CPM networks, showing that subprojects, defined as 

subgraphs of the original network, may be analyzed as separate networks and the earliest
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and latest event times need not be recalculated. Slack time for each activity of the

subproject analysis was shown to be a lower bound for the actual slack time of the activities

of the subproject included in the analysis of the original network. Regrettably, Francis’ 

method does not address the problem of how the initial partition, N ' ,  which is a 

decomposition of the original network, is to be obtained. About N 1 he wrote:

We assume that N l is determined subjectively and logically 
for the particular problem context and managerial application 
at hand. ... It is assumed at Block 2 [of the algorithm] that
N 1, the initial node partition set, “makes sense” for the
problem context at hand.

(Francis, 1986)

2.8.2 The K  Most Critical Paths

When networks are large and burdensome to reduce, managerial insight into the 

projects represented by the networks can be obtained by identifying the paths and activities 

that are critical to achieving the objectives of the projects. In deterministic activity networks 

(DANs), in which activity durations are constants, an activity is either critical with a slack 

time of zero, or noncritical with a slack time greater than zero. However, a noncritical 

activity with a smaller slack time should receive more attention from project management 

than a noncritical activity with a larger slack time, because any slippage in the critical 

path(s), the sequence(s) of activities with zero slacks, might cause an activity to become 

critical. Therefore, measured against other activities, the criticality of an activity constitutes 

a relative measure indicating the activity’s demand upon project management attention. 

Hence, critical paths and activity criticalities play an important role in project management 

By contrast, in a stochastic network in which the durations of activities are random 

variables, the tasks of project management and control are more problematic due to the 

difficulty in determining the critical (longest) path(s) and criticalities of the activities. Dodin 

(1984) illustrates the difficulty:
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Let P  denote the set of paths in a PERT network, and Z(ji,) 
denote the duration of path it, G P . Then,

z ( ^ ) “

where TtJ is the duration of activity atJ EA .  The criticality 
of a path i ,G P  is measured by the probability that its 
duration, , is greater than or equal to the duration of 
every other path. We call this probability the criticality index 
of the path, and denote it by C R . Thus for any jt,E P ,

CR( ji,) -  P[Z(jt,) i  Z( nq) for all n q E P ] . (1)
The criticality of an activity is measured by the sum of the 
criticality indices of the paths containing that activity. We 
call this measure the criticality index of the activity, and 
denote it by CA. Therefore, for an arc a:J EA,

CA(atJ) -  y C R ( j r,).
{ flay e r,}

Clearly, identifying the most critical paths and activities, i.e., 
the paths and activities with the highest criticality indices, 
requires both identifying all the paths in the set P,  which is 
a burdensome task, and evaluating the criticality index (1) 
for every path j t ,EP .  which is impossible for most PERT 
networks.

(Dodin, 1984)

The problem of identifying the K  most critical paths in a stochastic network is of both

theoretical and practical interest. Identifying the K  paths with the highest criticality indices

aids in determining the most critical segments in a project, and the most critical activities in

a stochastic network (problem 13, chapter 1, Elmaghraby, 1977): if an activity lies on all of

the K  most critical paths, then it must be among the most critical activities in a project. The

durations of the most critical paths in a stochastic network can be used to test the sensitivity 

of the project completion time, TN -  max ̂ ^{Zij i ,)} .  As in DANs, identifying the most

critical paths and activities supports the tasks of project scheduling and control.

The K most critical paths in a stochastic network can be identified in one of two ways: 

by complete enumeration, which is practical only for small-size networks, or by Monte 

Carlo simulation. In either case, all the paths must be identified and the corresponding
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CRs calculated, both of which are burdensome tasks; then the paths must be ranked in 

nonincreasing order of their CRs. The problem of calculating CRs and CAs was first 

considered by VanSlyke (1963), who used a crude simulation to approximate their values. 

Martin (1965) defined CR and CA conceptually without suggesting a practical method to 

obtain their values. Sigal et al. (1979) suggested the use of conditional Monte Carlo 

simulation to approximate the CR s, and then used them to approximate the CA s.

Dodin (1984) developed a heuristic procedure based on stochastic dominance relations 

among the paths. The heuristic was the first analytical procedure to identify the K  most 

critical paths without using Monte Carlo simulation or identifying all the paths and the 

corresponding CRs. The procedure starts at node 2, where it identifies the single path 

ending at node 2. Then, it moves sequentially to nodes 3,4,... until it reaches the sink 

node, N . At each step, if the number of paths ending at the node is greater than K,  the 

procedure has identified and ranked the K  most critical paths to this node; otherwise, the 

procedure has identified and ranked all paths ending at the node.

The following notation was used in his development:

IN(j)  = in - degree of node j .

Pj = set of paths ending at node j.

3ij =k'h critical path ending at node j.

Z(jt* ) = random variable, duration of path.

Path n * dominates in probability (stochastically dominates) path , symbolically 

jt) a jr ', if

P[Z(*J) a  Z(x\)J a P[Z(w/) a  Z(w*)]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

86

1

Figure 23. Node j  in a PERT network.
[Adapted from Dodin (1984)]

The heuristic assumes that the network has a source node, node 1, and a single sink 

node, node N,  and additionally that each node / (/ * 1, AO is connected from below and 

above, i.e., there is at least one path from source to sink containing every node i (i * 1, AO- 

The heuristic proceeds as follows:

1. Start at node j  -  1. i.e., the starting node which has no 
paths ending at it. Therefore, n\  -  0 a n d  Z (^* )- 0 
with probability one for all k -  1 ,2 ,...,# .

2. Sequentially proceed to node j  +l<i N , identifying the 
first K  critical paths as follows:
2a. Assume that the process is at node j  where 

j  -  2,3,..., N. Suppose there are n arcs ending in 
node j  and for convenience these arcs and their 
starting nodes are numbered from 1 to n as shown 
in Figure 23. Furthermore, assume that the K 
paths ending at node i < j  are ordered (as they are
identified) such that I < k if & ;r*. Hence, we 
have n ordered sets of paths with each set 
containing K or fewer paths (Figure 23).
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2b. To identify j t ' ,  we consider only the first path in 
each of the n ordered sets. Let jt’1 « jt,l + <̂  and 
Z (jt'1) -  Z ( x li ) + Tij for all i -1,2,...,/!. Then, 
n) -  jt,”1 if a j t '  for all / -1 ,2 ,..., n and / * /. In 
this case, Jt\ is flagged and i t )  will take its place, 
i.e., let jt~' -  nf  + atj. The second path a * is 
chosen similarly from a set of n paths (the first path 
in each of the n ordered sets); i.e., n 2 -  jt~' i f  
j t ”1 z jc"1 for all i -1,2,.. ., n and i * q. The remain
ing K -  2 paths are chosen similarly.

2c. If jt* rc' + atJ for an i -  1,2,...,/! and / -1,2,...,K,
then Z(nkj ) ~  ZiJi^ + Ty. The probability density
function (pdf) of the random variable Z(jt*) is 
obtained by convoluting the pdf’s of the random 
variables Z(iz\) and Ttj.

3. If j  -  N,  stop; otherwise, go to Step 2.

The heuristic is depicted in the flowchart in Figure 24.

Complexity

For the case when continuous activity duration distributions are discretized, Dodin 

(1984) established the complexity of the procedure, which is a function of N ,  K,  and the 

number of discretization points (realizations), NR. At any node j  * 1, where 

n -  IN(j)  s  j  -  1, the heuristic must identify K  paths. From Step 2b, the first path is 

chosen from the first n paths {jt * + atj for / -1,2,... ,/i>. Hence, identifying the first path 

j t ‘ requires n convolutions, where each convolution is of the form Z(n\) + TtJ. Also,

from Step 2b, each of the remaining K - 1 paths requires only one convolution of the same 

type. Each convolution is O(NK)2, where NR is the maximum number of realizations of 

either of the discrete random variables Z(ji*) and Tiy If the number of arithmetic

operations in one convolution is C, then the total number of arithmetic operations related to 

convolutions is:
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S ta r t

Input  the  
PERT n e tw ork

^ A r e  \  
alt  pdf 's  

d iscrete"?

Yes

Start  at n o d e  1 ,  i.e. letD is c r e t i z e  all the  
c o n t i n u o u s  dis tributions

Let j = j * 1 ,  n = IN(j) a n d  
k = 1 .  Order t h e  p re c e d in g  
n o d e s  a s  in F ig u re  1.

D e te rm in e  t h e  kth cri t ica l  p a th  : Let 
= a n d  Z ( ^ )  = Z(n’ h  a n d  p = 1

Let n p =np ' lor all q = 1 , 2 ..... K-1.
n ’p : n p * ( P i )  c a lcu la te  t h e  pdf of 

Z (n"p )= Z(np )* Ypjt s e t  k = k * 1

i < n

Y e s
k<K

Y esf  Print t h e  top K 
d om in a t ing  p a t h s .

S top

Figure 24. A heuristic to identify the K most critical paths. 
[Adapted from Dodin (1984)]
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The value D  is added to the arithmetic operations involved in the K ( n - 1) comparisons 

used to identify the K most critical paths ending in node j ,  denoted by & Each path ji*

for k  -  1,2,...,K  is chosen from a set of n paths in Step 2b. Each comparison is also 

0 ( N R f , since it requires the evaluation of an expression similar to:

P[Z(jtj) s  Z(jr/)]a= P [ Z ( j ') iZ ( ^ ) ]

which is the definition of the stochastic dominance relation. Therefore,

E z f c K i n - D x C K ^ U - Z )
j - 2 1 - 1

and the total number of arithmetic operations of the heuristic is:

+ j - 2 )  + K(j  -2 )]
i-i

-a e jjC /'-D  + c J  O'"2)iZ  j-z
-  CKN(N - 1) / 2 + C(N2 -  1) / 2 

which is 0(CKN2) where C is O(NR)2.

Stochastic Dominance

For any two paths jtl and jt2 ending in node i ss N, it may be possible that jt, is more 

critical than n 2. Hence, from the definition of CR:

P[Z(*i)* Z(w,) for all nq 6 P , ] iP [ Z ( i2) i Z ( ^ )  for all nq £ P J

The difficulty in evaluating this expression led to the introduction of the dominance in 

probability (stochastic dominance) relation:

P [Z (^ )aZ (w 2)] iP [Z (» 2)a Z ( i,) ]

An immediate consequence of the definition of stochastic dominance is this result:
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Proposition 3. Let jt,  and ji2 be two paths ending in node /, 
so that jt , a  n2. Suppose node i is an immediate

t  f

predecessor of node j. Form the paths jt, and n 2 by 
adding the arc a,y to both paths jt , and n 2, respectively.

f  t

Then, jt , i  n2 .
(Dodin, 1984)

If jtx, n 2, and Jt3 are three paths ending in node i,, with durations Z ( ^ ),Z(n2), and 

Z(n3), respectively, and and n2 a then it is normally the case that n l a

i.e., the dominance relation "a" is transitive. However, there are counterinstances where 

the dominance relation is intransitive. Dodin (1984) stated that it can be shown that the 

dominance relation is transitive if the pdf’s of the random variables Z(it,) for I -  1,2 and 3

belong to the same family of distributions. Further, if the node number /, is large, then the

pdf of the random variable Z(jtt) for 7i, EPt , which is defined by Z(jt,) -  ^  Tpq, can be
a« e*/

approximated by a symmetric distribution, usually the normal. Tversky (1969) stated 

without proof that if the random variables {Z{nl\ n l GP,} are normally distributed, then

the relation "a" is transitive. Dodin (1984) proved the more general result that "a:" is 

transitive if the pdf’s of the random variables {Z(jt,), jt, GP,} are symmetric around their

respective means.

The transitivity of the relation "a" can be applied in stochastic networks to identify the 

first K  critical paths. For high-numbered nodes, Dodin’s (1984) transitivity results 

eliminate many paths by dominance in the heuristic procedure. In small-numbered nodes 

(2, 3, 4 and 5), the transitivity of the relation, which may not hold at these nodes, is not 

needed: if K is large, then the number of paths ending in these nodes is less than K,  and 

all such paths can be searched and ranked; if, however, K is small and the pdf’s of the 

paths ending in these nodes are neither symmetric nor belong to the same family of 

distributions, a search is conducted over all the paths ending in any of the nodes. Dodin
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(1984) proved this result about the heuristic procedure:

Theorem 5: For any node in a PERT network in which 
2 s  j  s  N,  the K  paths identified by the heuristic procedure 
dominate in probability all other paths ending at node j .

From the above result, Dodin (1984) concluded that the question of identifying the 

highest K  critical paths reduces to showing that:

n, a  :tk implies CR(;r,) i  CR(jtt )

The two statements in the implication are positively correlated, as is apparent from their 

definitions: j i ,  is the most dominating path in a network if

P[Z( J t,)  *  Z( J tq)] a  P[Z(jtq )* Z ( j t ,)] for all J tq E  P

and J t,  is the most critical path if

P[Z(;r,) :► Z(jtq) for all Jtq EP] aP[Z(jrt ) a  Z(jtq) for all J tk EP] for every Jtk E P

If the implication were true, then the K paths identified by the heuristic would be the most 

critical paths, and the heuristic would be an exact procedure. Dodin (1984) demonstrated 

that, even though the implication is true in most cases, there are counterinstances when it 

does not hold.

Computational Experience

Dodin (1984) coded and compiled the heuristic in FORTRAN on a UNI VAC 1100/80. 

As his was the first attempt to solve the problem erf- identifying the K  most critical paths in 

stochastic networks, it was not possible to compare its accuracy with the accuracy of other 

procedures. Consequently, he tested its accuracy and efficiency against Monte Carlo 

simulation.

A Monte Carlo simulation model was developed for stochastic networks whose activity 

duration distributions are one of seven pdf’s (uniform, triangular, normal, exponential, 

gamma, beta, or discrete). The model assigns a random value (realization) to each arc in
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each network tested, generated from the activity duration pdf. Then, CPM is used to 

identify and record the critical path(s). These two steps are repeated for a predetermined 

number of replications; each time the frequencies of the critical path(s) are updated. Dodin 

(1984) observed that this Monte Carlo simulation process is possible, but impractical for 

large and dense networks for the following reasons:

1. The large number of paths in the network: The number 
of paths in an activity network with N  nodes is 
bound[ed] from above by 2W-2, which is the number of 
paths if the network is completely connected. Therefore, 
in a dense network with large N,  identifying the paths 
alone constitutes a major task; and taking a large enough 
sample to obtain a fair estimate of the CRs requires an 
inordinate amount of time.

2. Recording the critical paths and their frequencies: Every 
MCS [Monte Carlo sampling] run (realization) identifies 
at least one critical path. Such a path has either been 
identified and recorded in previous realizations, or it is 
being identified for the first time and must be added to 
the list of critical paths. Deciding whether this path has 
been recorded earlier or not requires comparing it with all 
other paths in the list. This task is burdensome; to 
illustrate the difficulty of such a task, let us consider the 
realization 5001. Assume that the previous 5000 
realizations have identified 1000 different critical paths; 
i.e., the list of critical paths has length 1000. To decide 
if the latest critical path has not been previously 
recorded, it must be compared with some or all of the 
critical paths on the list. If it is on the list, then its 
frequency will be increased by one; otherwise, it will be 
added to the list, which could yield an impractically large 
list.

These difficulties limit the use of Monte Carlo simulation in identifying the most critical 

paths in stochastic networks and enhance the need for the heuristic procedure. Because of 

these difficulties, Dodin (1984) limited the use of simulation to test the accuracy and 

efficiency of the heuristic to networks o f sizes A^s30andA s  90. The heuristic, 

however, can be applied to large, dense activity networks without encountering the 

difficulties of simulation.
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To achieve a more convincing test of accuracy, each network tested was a “strongly 

random network,” generated at random from the space of all connected, acyclic, directed 

graphs with the required numbers of nodes and activities. The network generator used was 

Dodin’s (1993) modified version of the generator originally developed by Herroelen and 

Caestecker (1979). Random network generation is discussed in Section 2.7.2. 

Continuous activity duration distributions were discretized. Dodin (1984) employed the 

same hybrid discretization approach he used in testing sequential approximation (Dodin, 

1980 and 1985a): he limited the use of the equal probabilities method to the exponential 

distribution; the equal distances method was used for the uniform, triangular, normal, 

gamma, and beta distributions. Table 2 [in Section 2.4.4 (above)] presents computational 

experience with this hybrid approach on a UNI VAC 1100/80. Table 10 presents the 

parameters of the pdfs used in Dodin’s analysis of the accuracy of the heuristic.

Dodin (1984) randomly generated the 14 networks in Table 11 and applied the heuristic 

to identify the three most stochastically dominating paths. He also simulated the networks 

to identify the three most critical paths, since it is not possible to identify the exact critical 

paths for any stochastic networks. In each network, the pdf’s characterized in Table 10 

were used equally; for example, in the network with N  -  20 and A » 70, the first ten arcs

Table 10. Parameters of the PDF’s Used in the Accuracy Analysis. 
[Adapted from Dodin (1984)]

Order Distribution
Type

Mean Value or 
1st Parameter

Standard D e
viation or 

2nd Parame
ter

Minimum
Realization

(u)

Maximum
Realization

(o)

1 Uniform 5.0 — 0.00 10.00
2 Triangular 5.0 — 1.00 11.00
3 Normal 8.0 2.0 2.00 14.00.
4 Exponential 2.0 — 0.00 15.00
5 Gamma 3.0 1.0 0.00 10.00
6 Beta 3.0 2.0 1.00 11.00

7 Discrete 1(2.0, 0.20), (3.0, 0.30), (4.0, 0.30), (5.0, 0.20)1
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Table 11. Performance Measures for Randomly Generated PERT networks. 
[Adapted from Dodin (1984)]

Problem
No.

Size o f Activity 
Network CPU Time (in seconds) Order of Paths

N A Procedure
MCS (sam
ple size =  

5000)
Path 1 Path 2 Path 3

1 10 15 0.92 21.55 1 1 1
2 10 20 1.94 30.43 1 1 1
3 10 30 7.80 42.55 1 0 0
4 10 40 11.60 56.25 1 1 0
5 20 30 9.47 46.20 1 1 1
6 20 40 9.92 60.10 1 1 1
7 20 50 15.61 69.60 1 0 0
8 20 60 26.81 85.88 1 1 1
9 20 70 31.55 97.90 1 0 1

10 20 80 39.84 149.38 1 1 0
11 30 45 16.70 70.13 1 1 1
12 30 60 29.26 89.68 1 0 1
13 30 75 33.96 106.35 0 1 0
14 30 90 43.65 155.75 1 1 0

had the uniform pdf, the second ten arcs had the triangular pdf,..., and the last ten arcs had 

the discrete pdf. The accuracy of the heuristic was measured by the closeness between the 

set of stochastically dominating paths, identified by the heuristic, and the set of 

corresponding critical paths, identified by Monte Carlo simulation; the efficiency of the 

heuristic, by comparison of the CPU times required.

Dodin (1984) reported that the variations in the measures of performance depended on 

the size and density of the test networks, the activity duration distributions, and the 

accuracy of discretizing the continuous distributions. Table 11 shows the impact of the size 

and density of networks. It compares the three stochastically dominating paths with the 

three most critical paths of Dodin’s 14 test networks (problems). An entry of “ 1 ” in the last 

three columns of the table indicates that the stochastically dominating path was 

identical to the corresponding critical path, whereas an entry of “0” indicates that the two 

paths were not identical, but differed by at least one arc. For example, in the third problem
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with N -1 0  and A -  30, the first stochastically dominating path was identical to the first 

critical path, while the second stochastically dominating path was not identical the second 

path. Table 11 evidences that the first stochastically dominating path matched the first 

critical path in 13 of the 14 problems reported. Ten out of 14 of the second stochastically 

dominating paths matched the second critical paths, and eight o f the third stochastically 

dominating paths matched the third critical paths. The first stochastically dominating path 

in problem no. 13 matched the third critical path, whereas the third stochastically 

dominating path matched the first critical path; i.e., in problem no. 13, the set of the three 

most stochastically dominating paths equaled the set of the first three critical paths; 

however, the order of the paths in both sets did not match. Problems nos. 3 and 7 were 

similar. In all the paths that did not match, the stochastically dominating path differed from 

the corresponding critical path in no more than four arcs. Most of the nonmatching paths 

occurred in networks with arc to node densities higher than two, which Dodin attributed to 

the large number of paths in dense networks with similar or close durations. In all the 

networks tested, Dodin reported that the three most critical (or stochastically dominating) 

paths had many arcs in common, i.e., many of the arcs o f the most critical (or 

stochastically dominating) paths were constituents of the other critical (or stochastically 

dominating) paths.

Dodin (1984) reported that the CPU time for the heuristic depends on the network 

structure, arc to node density, and number of discretization points, N R. Column 4 of 

Table 11 shows the CPU time for the 14 test networks, where every continuous activity 

duration distribution was approximated by a discrete distribution with ten points 

(realizations). The table evidences that the CPU time depends on the network structure; 

this dependence becomes evident when one compares the CPU times required for networks 

with the same number of arcs, for example, problem nos. 4 and 6. The impact of network 

density on CPU time can also be observed from column 4 in the sets of networks with 10,
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20, or 30 nodes: as the density increases, the CPU time requirements reach the worst case 

numbers in the discussion of the complexity of the heuristic [above]. For all the networks 

tested, the CPU time required by the heuristic on a UNI VAC 1100/80 was less than 45 

seconds when the duration of every activity had no more than ten discretization points 

(realizations). The computational requirements of the heuristic were less than the CPU 

times required by the simulation model, which depends on network size, simulation sample 

size,, and types of activity duration distributions used. Column 5 of Table 11 shows the 

simulation times for a simulation sample size of 5,000.

In the development of the complexity of the heuristic [above], Dodin (1984) showed 

the number of discretization points, NR , affected the complexity of both the convolution 

operation and the dominance relation. Consequently, it affects the CPU time requirements. 

Table 12 evidences the impact of NR on the CPU time of the heuristic: CPU time increases 

as NR increases; but, the accuracy of discretization also increases as NR increases. As is 

the case with most approximations, there is a trade-off between accuracy and cost of 

execution of the heuristic. The problems in Table 12 were similar when NR -  20, the first 

three stochastically dominating paths matched the first three critical paths in the first three 

problems, while in the fourth problem the match was the same as for problem no. 4 in 

Table 11. When NR -  5, the match was less accurate than when NR -  10, which is 

shown in the first four problems of Table 11.

Table 12. Impact of Number of Discretization Points on CPU Time of the Procedure.
[Adapted from Dodin (1984)]

Problem
No.

Activity Network 
Size CPU T im e (in seconds)

N A NR =  5 N R =  10 N R =  20

1 10 15 0.09 0.92 3.07
2 10 20 0.31 1.94 6.48
3 10 30 0.469 7.80 25.50
4 10 40 0.968 11.60 40.35
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Dodin (1984) demonstrated that the heuristic procedure can be used to identify the most 

critical activities in stochastic project management networks. First, the heuristic can be 

used to identify the most critical path. Second, in networks with low densities, the 

heuristic can be used to identify the second, third,..., and critical paths, whereas in 

dense networks it can be used to approximate the set of the K  most critical paths, i.e., 

without consideration of the path’s rank in the set. As implemented to date, the heuristic 

can be applied to any stochastic network by discretizing all continuous activity duration 

distributions. When discretization is used, the accuracy of the heuristic is increased by 

minimizing the errors of discretization, and the CPU time requirements depend on the 

number of discretization points (realizations) of the activity duration distributions. The best 

reported performance is less than 45 seconds CPU time for an activity network of size 

N a 30 and A  s 90 with no more than ten discretization points for any activity duration.

2.9 Computer Applications

2.9.1 Recent Trends

Increasing competition, both in the US and overseas, conspired with the global 

economic downturn in the early 1990’s to squeeze all sectors of the US economy. While 

the short-term impact of the Fiscal crunch was detrimental to the nation’s industrial base, the 

long-term ramifications may prove to be, quite unexpectedly, quite positive. American 

industry, forced to streamline processes, slash development cycles, improve cost 

accounting, and enhance quality, is emerging from the recession as a lean, quality-driven 

operation. This period of cost-consciousness coincided with a change in the information 

technology environment which significantly impacted the availability of sophisticated 

project management cost and control tools. Advances in hardware technology and 

improvements in software user-friendliness have lowered the entry barriers to the use of 

these tools. (Rogers, 1993)
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Downsized Solutions

While organizations have historically been forced to choose between huge, expensive 

mainframe and minicomputer-based project management systems that offered the 

sophistication and functionality to maintain tight control over large projects, and PC-based 

systems that offered very limited control at a fraction of the cost, 1990’s buyers are free 

from this tradeoff. Today’s leading edge applications combine the functionality of 

graphical user interfaces (GUIs) with the high-end processing capabilities which are 

typically found in mainframe or minicomputer environments. Organizations can now 

acquire sophisticated project management capability at a fraction of the cost of “yesterday’s 

‘big iron” systems” (Rogers, 1993). This technological advance has significantly lowered 

the threshold to implementation of project management tools. Organizations that had 

considered implementing project management tools, but had been scared away by the size 

of the financial investment, or those which recognized their importance but opted for less 

expensive and less powerful systems, are now moving into the new generation of 

powerful, downsized applications. While in the past many corporations only implemented 

project management on expensive or “critical” tasks, today there are few corporations 

which have not become cognizant of the impact to the bottom line of every operation they 

undertake. The majority are embracing the newly affordable tools and bringing an 

increasing number of their operations within project management control.

As the price of high-level tools has dropped, they have also become more user-friendly 

and, consequently, more practical to install at all levels of an organization, even down to 

the shop floor. GUIs, once a feature of low-level project management tools, now provide 

intuitive access to much more sophisticated tools. Changing the duration of a project 

component, once a task that required database entry and adjustment, can now be achieved 

with a mouse by “pointing and clicking” or “dragging and shrinking;” the impact on total 

cost is calculated, and required resource-leveling is performed instantly. GUIs are making
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traditional project managers increasingly more productive and are bringing a new 

population of users into the discipline.

Enterprise-wide Deployment

The client/server processing architecture, a  newer and more sophisticated technology 

than the GUIs, is increasing in maturity. The enterprise-wide access that it provides has 

combined with the graphical revolution to widen the domain of project management 

applications. Client/server was developed in response to the market’s demand for a 

downsized architecture that could harness the capabilities of all sizes of processors - PCs, 

minicomputers, and mainframes. The architecture exploits the efficiencies of division-of- 

labor to facilitate enhanced processing throughput. While GUIs are making project 

management understandable to project rank and file, client/server is allowing the 

deployment of project management systems to every terminal throughout an organization. 

Together, the two advances are making “the project management system accessible to the 

user and the user accessible to the project management system” (Rogers, 1993).

Real-time Processing

As PCs have been introduced, project management has benefited from their real-time 

processing capabilities, the third element in the GUI, client/server, technological 

development triad. Budgets can be adjusted, new variables introduced, and activity 

durations altered, and the effects of these changes can be calculated and displayed 

immediately. The reliance on mainframe or minicomputer batch-processing-based systems 

to perform complex, “what-if” scenario modeling and resource-leveling is a thing of the 

past, and project managers need no longer suffer batch-processing delays of hours and, 

sometimes, days. In the time-sensitive discipline of project management, such delays 

aren’t acceptable any longer: by the time the full ramifications of a change have been 

recognized, it may be too late to adjust activity schedules/resource allocations to prevent 

cost/schedule overruns.
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2.9.2 Software Sophistication

While project management has profited from these recent technological advances in 

hardware performance, processing architectures, and software user-friendliness, and the 

capabilities available particularly to low-end users have improved considerably, the 

sophistication of project management software has not kept pace. Today there are 

numerous project management software packages available from commercial software 

developers, applications software developers, and management consultants. With the 

exception of the upper-end, network-based simulators, such as SLAM and SIMAN, these 

software packages offer only the “traditional” project management analysis tools - CPM, 

buckets, Gantt, PERT, WBS, OBS, outline, Pareto, constrained resource management/ 

resource leveling, et al., albeit with highly sophisticated graphical interfaces. Few offer the 

capability for even basic output analysis. In an industry-wide survey of commercially 

available project management software packages excluding simulators, Gido (1985) 

reported 127 sources. Only 27% of these programs make statistical computations, the 

majority of which are the probabilities of achieving scheduled times for milestone events 

and network completion, computed with PERT: for each activity, the user must input three 

duration estimates (optimistic, most likely, and pessimistic), and all activity times are 

assumed to follow a single probability distribution (Beta). An additional 11% of these 

programs permit the user to input the three activity duration estimates required by PERT, 

but surprisingly do not make any probability calculations. None of these programs is 

capable of characterizing a network’s throughput distribution. Recent efforts have focused 

on packaging basic project management network tools for PC users in the research and 

small business sectors. Smith (1992) developed a microcomputer-based program in Turbo 

Pascal which generates an activity-on-node network model in graphical form for a small 

project with fewer than 50 activities, but it is not capable of reducing the network or 

performing any other network analysis. Most recently, Duffy (1993) reported on the 15
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leading vendors of project management software for windows environments supported on 

computer network operating systems. Only one offers a statistical analysis capability 

(probability profiles) more sophisticated than histograms.

2.10 Summary

The traditional methods for the reduction of project management networks are CPM for 

deterministic networks and PERT for stochastic networks. Attempts to develop exact 

analytic solutions of stochastic networks proved unsuccessful and were abandoned in the 

late 1970’s in favor of simulation and an emerging interest in approximation solutions. 

Simulation is effective but may require lengthy run times to insure steady states have been 

achieved. Stochastic network reduction involves the repeated application of series-parallel 

reduction operations until a network is either completely reduced to a single, equivalent arc 

from source node to sink node or to an irreducible core consisting of one or more 

interdictive graphs. Three approximation reduction methods have been put forward for the 

reduction of irreducible networks. Under the “ independent multiple arcs” (dual arcs) 

method, duplicate arcs are inserted into an irreducible network to achieve separability; the 

separable network is then reduced with series-parallel reduction operations. The theory has 

been developed, but the method has not been implemented. The sequential approximation 

method steps through the network nodes in order, building the throughput distribution as it 

goes. Implementation to date has required that continuous activity duration distributions be 

discretized. To achieve acceptable accuracies of network reduction, the number o f 

discretization points needed may be large, which imposes high computer run-time and 

storage requirements. The ordered recursive method requires a network arc for each 

discrete state value of every activity duration distribution, and is correspondingly run-time 

limited. It has practical utility only for small networks. To evaluate the performance of 

network reduction techniques, a design of experiments approach should be used; the
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numbers of nodes and activities, the network structure, and the types and parameters of 

activity duration distributions should be randomly generated for all test networks. The 

reduction of large networks may be impractical because of high computer run-time and 

storage requirements, and a large network decomposition method has not yet been 

developed. The most critical paths and activities cannot be determined without extensive 

simulation; however, stochastic dominance can be used to approximate the K  most critical 

paths. Improvements in computer hardware technology, GUIs, and client/server 

processing architectures have brought high-end user project management capabilities to 

low-end users, but software packages continue to lack sophistication in output analysis. 

Other than simulation, there is no stochastic project management network reduction 

capability available on PCs.
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CHAPTER 3 

METHODOLOGY

3.1 Characteristics of Analytic Reduction

The focus of this research is the development of a new, novel, more capable, and more 

efficient numerical approximation method for stochastic activity/project management 

network reduction. The shortcomings of the first attempt at an exact solution to this 

problem provide an excellent point of departure for methodology construction.

Martin (1965) developed the concept of a series-parallel algorithm for the exact analytic 

solution of acyclic, directed networks (Sections 2.4 and 2.5). In theory, the series 

reduction (convolution) and parallel reduction (maximum) operations would be 

accomplished analytically, via direct integration and differentiation, so in final form the 

expression of the throughput distribution would be exact. In order that all the direct 

integration and differentiation could be carried out on a digital computer, he restricted the 

concept development to networks, all of whose activity duration distributions had 

piecewise-defined polynomial densities. Because of the limitations on speed and storage of 

digital computers of the time, he further restricted the actual computer implementation to 

separable networks, all of whose activity duration distributions were uniform. He 

demonstrated the concept by successfully obtaining the exact pdf of throughput time for a 

simple network with nine nodes and eight arcs and all-uniformly distributed activity times.

As encouraging as Martin’s results were, three significant shortcomings prevented his 

approach from being developed further

First, the algorithm was restricted to networks, all of whose activity 

duration distributions had piecewise-defined polynomial densities. 

Continuous activity duration distributions could not accommodated, because 

there was no way to program a digital computer to carry out the direct
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integration and differentiation required to accomplish series-parallel 

reduction operations.

The second shortcoming was the problem of “exploding coefficient 

storage.” All the activity duration distributions had to have piecewise- 

defined polynomial density functions. If two such distributions, whose 

piecewise-defined polynomial densities have terms of as-high-a degree as 

m and n , respectively, are series-reduced, the convolution also has a 

piecewise-defined polynomial density which can have terms of as-high-a 

degree as m + n+ 1. Similarly, if two such distributions, whose piecewise- 

defined polynomial densities have terms of as-high-a degree as m and n , 

respectively, are parallel-reduced, the maximum also has a piecewise- 

defined polynomial density which can have terms of as-high-a degree as 

m + n + 1. (Each cdf can have terms of as high a degree as m +1 and n + 1, 

respectively; the product of the cdf’s can have terms of as high a degree as 

m +/I + 2 ; so, the pdf of the maximum, which is the derivative o f the 

product of the cdf’s, can have terms of as high a degree as m + n + l . )  

Martin’s simple nine-node, eight-arc example network with all-uniformly 

distributed activity times had a piecewise-defined polynomial throughput 

time density with terms of as-high-as the fifth degree; for that particular 

network structure, the throughput time density could have had terms of as- 

high-as the ninth degree, had the uniform activity time distributions been 

defined differently. As soon as it is created, the coefficient of each term in a 

piecewise-defined polynomial density must be held in a computer storage 

location because it may potentially be involved in later series-parallel 

reductions. When larger networks with piecewise-defined polynomial 

activity duration densities with terms of higher degrees are considered, the
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computer storage requirements for coefficients quickly explode.

The third shortcoming was the related problem of “proliferating classes.”

Again, all the activity duration distributions had to have piecewise-defined 

polynomial density functions. Each such density is piecewise-defined on a 

partition of some number of classes (cells), c, over its domain of definition; 

the partition consists of c +1 points spread across the domain. If two such 

densities, piecewise-defined on cl and c2 classes, are series-reduced, the 

convolution will be piecewise-defined on as many as (c, + l)(c2 + 1) - 1  -  

c,c2 + c, + c 2 classes. Similarly, if two such densities, piecewise-defined 

on c, and c2 classes, are parallel-reduced, the maximum will be piecewise- 

defined on as many as c, + c2 + 1 classes. As soon as it is created, the 

coefficient of each term of each polynomial piecewise-defined on each of 

these classes must be held in a computer storage location because it may 

potentially be involved in later series-parallel reductions. When larger 

networks with piecewise-defined polynomial activity duration densities 

defined on even moderate numbers of classes are considered, the computer 

storage requirements for coefficients again quickly explode.

The second and third shortcomings are overcome if the activity duration densities are 

maintained as polynomials of a fixed degree, piecewise-defined on a fixed number of 

classes, since coefficient storage requirements are now controlled. This is accomplished as 

follows. Whenever an intermediate or final product is formed by a series-parallel reduction 

operation, the pdf of that product is immediately transformed into polynomials of a fixed 

degree, piecewise-defined on a fixed number of classes over its domain. If, prior to 

network reduction, continuous activity duration distributions are similarly transformed into 

polynomial densities of the same fixed degree, piecewise-defined on the same fixed number 

of classes over their domains, then the first shortcoming is also overcome.
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3.2 Polygonal Approximation

Numerical approximation and reduction techniques for stochastic project management 

networks are proposed based on the following concept of operations:

Continuous activity duration distributions are initially approximated by 

polynomial densities of some predetermined degree which are piecewise- 

defined on partitions of some predetermined number of classes over their 

domains. The network is then reduced with one of the operative stochastic 

network reduction methods: either an implementation of “ independent 

multiple arcs” (dual arcs), or sequential approximation. Whenever a series- 

parallel reduction operation is required, it is carried out directly on the 

piecewise-defined polynomial densities which currently approximate the 

two involved distributions. The intermediate product of the series-parallel 

reduction operation is then immediately approximated and replaced by a 

polynomial density of the predetermined degree which is piecewise-defined 

on a partition of the predetermined number of classes over its domain.

When the network has been completely reduced to a single equivalent 

activity from the source node to the sink node, the throughput distribution 

has been approximated by a piecewise-defined polynomial density, which 

can be used directly in post-reduction analysis.

The numerical approximation method for continuous activity duration distributions will be 

completely described when the degree of the piecewise-defined approxim ating 

polynomials, the method of fitting the polynomials, and the number of classes in the 

partitions of the domains are specified. Approaches developed in numerical analysis for 

solving similar approximation problems, in particular numerical differentiation and 

numerical integration (quadrature), give insight into how best to make these specifications.
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Figure 25. Numerical integration rules based on interpolating polynomials.
[Adapted from Conte and deBoor (1972)]

3.2.1 Linear Approximation

When a sufficiently continuous function cannot be easily differentiated or integrated in 

closed form over a domain of values, the derivative or integral can be approximated 

numerically. A partition is erected on the domain, and a set of piecewise-defined 

interpolating polynomials is constructed such that one of the interpolating polynomials 

approximates the function in each class (cell) of the partition. The interpolating 

polynomials are differentiated or integrated within their respective classes and the results 

compiled across the partition. Figure 25 shows zero-, first-, and second-degree 

interpolating polynomials over a single class for the numerical integration (quadrature) 

problem. The higher the degree of the interpolating polynomials, the more accurate the 

numerically approximated derivative or integral, but the more computationally intensive the 

construction and subsequent differentiation or integration of the polynomials. Since the 

accuracy of the approximated derivative or integral can also be increased by refining the
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partition (increasing the number of classes by adding additional interior points), the best 

strategy is to approximate the function with piecewise-defined interpolating polynomials of 

“low” degree, and then refine the partition until the approximated derivative or integral has 

a desired accuracy (Conte and deBoor, 1972).

Now suppose that in a stochastic network reduction, all distributions are approximated 

by polynomials which are piecewise-defined on partitions of c classes over their domains; 

further suppose that two distributions are to be convolved by a series-reduction operation, 

and the intermediate product of the convolution is to be approximated and replaced by 

polynomials which are also piecewise-defined on a partition of c classes over its domain. 

The intermediate product of the convolution will be piecewise-defined on a partition over its 

domain which may have up to c2 + 2c classes. When the intermediate product is 

approximated and replaced by a new set of polynomials which are piecewise-defined on a 

new partition of only c classes over its domain, each of the c classes in the new partition 

will include all or parts of some of the up-to-(c2 +2c) classes of the partition of the 

intermediate product. If the number of classes in the “old” partition of the intermediate 

product is “large” (its maximum is c2 + 2c) relative to number of classes in the “new” 

partition, c , some of the “new” partition classes must necessarily include (all or some of) a 

considerable number of “old” partition classes. The density of the intermediate product is 

approximated by a different piecewise-defined polynomial in each class of the “old” 

partition. Consequently, when that density is approximated and replaced by a polynomial 

which is piecewise-defined over a class of the “new” partition which overlaps several 

classes of the “old” partition, the different behavior of the density in each of the overlapped 

classes of the “old” partition must be accounted for. If an interpolating polynomial were 

used, then it would have to be interpolated through at least one point in each of the 

overlapped classes of the “old” partition. If the polynomial were interpolated through k 

points, it would be of degree k -1 . If k -  1 is moderate or large (but not small), then this
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would violate the numerical approximation strategy of interpolating with polynomials of 

“low” degree.

Since the polynomials which are piecewise-defined on the classes of the “old” partition 

constitute an approximation of the density of the convolution, numerical values taken on by 

these polynomials, such as at possible points of interpolation, differ from the true values of 

the density at those points, although the actual errors aren’t known. So, fitting a set of 

“new” polynomials, which are piecewise-defined on the classes of the “new” partition, is 

better viewed as a data fitting problem, rather than an interpolation problem, where the data 

to be “best fit” are the numerical values taken on by the “old” polynomials at selected points 

in each of the classes of the “new” partition. In the absence of a convincing argument to 

select a different metric, it is customary to use the least-squares error to measure the 

accuracy of data fitting. When the least-squares error is minimized, the fitting method is 

the well-known least-squares approximation or least-squares regression. (Conte and 

deBoor, 1972)

Now that the method of fitting the piecewise-defined approximating polynomials 

has been identified as least-squares regression, the degree of the polynomials and the 

number o f classes in the partitions of the domains remain to be specified. If the 

approximating polynomials are zero or first degree, the fitting method is simple linear 

regression (SLR); if second or higher degree, multiple linear regression (MLR). As with 

interpolating polynomials, the higher the degree of regression-fit polynomials, the better 

approximators they are, but the more computationally intensive their construction is. Since 

the accuracy of approximation can be increased by both refining the partition and increasing 

the number of fitting points within each class of the partition, the best strategy is, again, to 

approximate with regression-fit polynomials of “low” degree and then refine the partition 

and/or increase the number of fitting points within each class of the partition. The 

continuous, non-uniform activity duration distributions most commonly encountered in
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Figure 26. Polygonal (linear polynomial) approximation of a curvilinear function.
[Adapted from Fergeson and Shortell (1978)]

stochastic project management networks (triangular, normal, exponential, gamma, and 

beta) have sufficient curvature that at least first-degree polynomials should be regression-fit 

to them. Since increasing the degree of the approximating polynomials above first degree 

would result in increasing the computational requirements of the regression from SLR to 

MLR, the piecewise-defined, regression-fit approximating polynomials are specified to be 

of the first degree (linear). When a curvilinear function is approximated by piecewise- 

defined first-degree polynomials, the approximation is polygonal.  Polygonal 

approximation of a curvilinear function (suggestive of a normal pdf) is shown in Figure 26.

Fergeson and Shortell (1978) studied the polygonal approximation of pdf’s and 

conducted a large number of trial and error tests involving the number of classes in the 

partition, the number of regression fitting points in each class of the partition, the computer 

run time required, and the accuracy of the piecewise-defined polynomial approximations.
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They found the best results are achieved when the number of classes in the partition is ten, 

the regression fitting points are positioned uniformly across each class, and the number of 

fitting points is determined by:

n -  10+ integer(class width *3)

In each class, the approximating polynomial is a line segment of the form:

b0 + bxl

where the regression coefficients are computed from the standard SLR formulas1:

To control error build-up from the polygonal approximation, after all ten sets of regression 

coefficients have been computed, the coefficients are normalized so that the probability 

under the approximated pdf is one:

correction factor (CF) -  1.0 / computed probability under approximation

The proposed numerical approximation and reduction techniques now consist of 

polygonal (linear polynomial) approximation coupled with one of the operative stochastic 

network reduction methods. Each technique is referred to as a Polygonal Approximation 

and Reduction Technique (PART).

yt -  /(/,), the pdf evaluated at l{

b0 -  b0*CF and bt -  bt*CF

1 Discussions o f SLR can be found throughout the probability and statistics literature. For example, Neter 
and Wasserman (1972) present a thorough treatment.
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3.2.2 Series Reduction

In accordance with the PART concept of operations, at all times during the network 

reduction process, regardless of which of the operative stochastic network reduction 

methods is being executed, the distributions of all activity durations are maintained as 

piecewise-defined polygonal approximations on partitions of ten classes over their 

domains. When two activity duration distributions are convolved through a series- 

reduction operation, an intermediate product is temporarily formed. This intermediate 

product is a polynomial of up-to the third degree which is piecewise-defined on a partition 

of up-to 120 classes. This section discusses the formation of series-reduction products.

Suppose that activities A, and A2 are to be convolved through a series-reduction 

operation, where the duration distribution of activity A, is currently approximated by the 

polygonal approximation /  which is piecewise-defined on a ten-class partition with class 

boundaries / lowerbound-  bfv bf2,...,bfu -  f appc[bowj over its domain [ / lowcr „ / uppCTbound],

and the duration distribution of activity \  is similarly currently approximated by the 

polygonal approximation g which is piecewise-defined on a ten-class partition with class 

boundaries giowtTbouad -  bgv bg2,...,bgn -  gupptr ^  over its domain [£lo« rbound,£ uppCT

The convolution /  ®g  is piecewise-defined on the set of classes whose boundary points 

are the values bj t + bgj, where i , j  -  1,2,...,11, i.e., all the possible combinations of the 

class boundaries of / and g. The bft + bgj's are sorted and ranked in ascending order;

duplicate values are ignored. The may be as few as 21 distinct combinations, and hence 20 

classes in the convolution - the case when /  and g are defined over the same domain - or as 

many as 121 distinct combinations, and hence 120 classes in the convolution. The domain 

of the convolution is:
[min (&/, + bg ), max (&/,. + bg )]

•■j ‘  i . j  1

The general form of the convolution is:

( f® g )U )  r )dr
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Over its i ̂  class, /  is defined by:

m  - f o + f l *

and over its class, g is defined by:

8 j ( 0 - g Jo + git

Over its k ^  class, the convolution is:

upper limitw-t upper unni . . . .

( /  ®g),  «  ^  + S M  + SiO ~ (1)
valid i^ d a a a  o f /  
aod yu  d a n  of g

For the k ^  class of the convolution, the i 1*1 class of /  and the y ̂  class of g are valid if 

either Part (a) or Part (b) of Figure 27 applies, or both.

lower bound o f  ith class o f  f  + upper bound o f  ith class o f  f  h
lower bound o f  jth class o f  g upper bound o f  jth class o f  g

kth class o f  convolution

(a)

^  kth class o f  convolution

lower bound of ith class o f f  + upper bound o f ith class o f  f  +
lower bound of jth class o f  g  upper bound o f jth class o f  g

(b)

Figure 27. Valid classes for convolution.

The following test is recursively performed over all possible combinations of the /' class 

of /  and the y ̂  class of g to identify the valid class combinations for the k class of the 

convolution:
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lower bound 1 

of fc* class of I i  
convolution J

lower bound of i* class "| 
of /  + lower bound of 

j lh class of g

and

upper bound 

o f**  class of 
convolution

[ upper bound of /* class 
s  I of /  + upper bound of 

[ j th class of g

If both conditions hold, then the i ^ 1 class of / ,  [bfitbful\, and the class of g ,  

[bgj,bgj+,] , are a valid combination of classes contributing to the it1*1 class of the 

convolution, [bk,bt+l\. Then:

s  i s  bfM and b g ^ t - r a  bg>+1

on

bft*  r s  bfi+l and t - bgJ+l s i s l -

From Equation (2):

ma\ ( b f t, t - b g j+l) n  r s m in (bful, t - b g }) 

From Equation (3), the limits of integration in Equation (1) are:

lower limit = max(bft,t -  bgJ+l)

upper limit = min( b f ^ t - b g j )

The conditions of Equation (4) are applied as follows:

If [bft «t(6t+1 - b g j ^ ) \  then lower limit = bft;
otherwise, lower limit = t - b g J+1.

If [bfi+l s  (bk -  bgj)], then upper limit = bfM; 

otherwise, upper limit = t - b g r

(2)

(3)

(4)

(5)
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Then the contribution of the class of /  and the class of g to Equation (1) is:

UDoer limit

f  .. (f'o + f IT)feo + si ( ' -J  lower limit

(6)

-  [if'ogi*+ H f i s i  -  f o g i ) *  -  ifisi-*3] + ( f o s i * T2)f][Zn
If, from Equation (5), a limit of integration in Equation (6) is a constant, c -  bft or b/i+l, 

the evaluation at that limit is:

[foSic + T(/,'<?o -  f'oSi)c2 - 7  fiSiC3] + ( f 0gic + j  fig{c2) t -  i  f 0g[t2 

If a limit is of the form t - c  - t  -  bgj or t - bgJ+l, the evaluation at that limit is:

[ - fo s i c + H f ig Jo -  f t i ) c 2 + k f l s t c }  +
V M - A g l c - i f l g l c ' y t  + \ M 2 + \ f lg { e

The contributions from Equation (6) are combined for all valid combinations of classes of 

/an d  g to form a piecewise-defined polynomial in the k class of the convolution. Once 

the convolution has been formed as this intermediate product, it is immediately replaced by 

a piecewise-defined polygonal approximation on a partition of ten classes over its domain.

3.2.3 Parallel Reduction

Similarly, when two activity duration distributions are reduced through a parallel- 

reduction operation, two intermediate products are temporarily formed. These intermediate 

products are polynomials of up-to the fourth and third degrees, respectively, which are 

piecewise-defined on a partition of up-to 21 classes. This section discusses the formation 

of the parallel-reduction products.

Suppose that activities \  and A2 are to be reduced through a parallel-reduction
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operation, where the duration distribution of activity A, is currently approximated by the 

polygonal approximation /  which is piecewise-defined on a ten-class partition with class 

boundaries / Iower bouDd-  bfv bf2 bf,, -  / uppCT ^  over its domain [ f lowtr bouod, / upper

and the duration distribution of activity \  is similarly currently approximated by the 

polygonal approximation g which is piecewise-defined on a ten-class partition with class 

boundaries glowtT ̂  -  bgv bg2,... ,bgu  -  g appa ^  over its domain [glowCThaud, g upper .

The distribution of the maximum of f a n d g  is piecewise-defined on the set of classes 

whose boundary points are the values { b f } U {bgj}, where i j  -  1,2,...,11, i.e., all the 

possible class boundaries of f a n d g .  The bf} s and bgfs  are sorted and ranked in

ascending order; duplicate values are ignored. Since the probability is zero that the 

distribution of the maximum takes on any values less than both / ,ower ^ ^ a n d  ^l0WCTb0und, the

lower bound of the domain of the maximum is:

[max(/,g)]Iowerbound ™ m a X  ( / l o w e r  bound’ 5 l  ower bound)

All boundary values lower than this lower bound are discarded. The may be as few as 11 

distinct boundary points, and hence 10 classes in the parallel-reduction - the case when 

f a n d g  are defined over the same domain, for example - or as many as 22 distinct 

boundary points, and hence 21 classes in the parallel-reduction. The general form of the 

cumulative distribution function (cdf) of the maximum is:

where F  is the cdf of /  and G is the cdf of g . Over its i ̂  class, /  is defined by:

m - A + f t
and over its y1*1 class, g is defined by:

gj(0 - s i  + g1}

For the k ^  class of the maximum, the i'^1 class of /  and the class of g are valid if: 

b f , s b k and bl+l s  bf ̂  and bgj s  bk and bM z b g J+i
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If all four conditions hold, then the I1*1 class of / ,  [bfi,b fi+l], and the class of g , 

[bgj,bgj+l], are valid classes contributing to the Jfcth class of the maximum, [fy ,^+i].

Then the cdf of maximum in the k ^  class is:

[^ — (/^(O ]* -  P ( t s  /  I tB[bklbk̂ ])

-  [PCOsTy. izbk) + P(bk s  rf  £ /)]-[P (0£  rg a bk) + P(bk s  xg s  0]

[F(bfi) + f f ( x ) d r ]  • [Gibgj) + fg(x)dx]
bfi bgj

[F(b/,) + f ( f ' Q + f l  x)dx]- [G( bgj) + J *(gl + g(x)dx]
bf,  b y

[F(bfi) + / - ( r - 6 / , )  + i / ; ( / 2 - b / l1)]-[G{bgJ) + g i ( t - b gj) +i g ' ( t 2- b g 2)]

[(Fm-f'obf;-\flbf )̂ + rot + \ f / y
KG(bgj) -  gJ0bgj -  \g{bg2) + gJ0t + \g [ t2]

To simplify notation, let:

C M )  -  F{bft) -  f j b f  , -  \ f xb f2 Ctibgj) -  G(bgj)~  gibgj -  lTg{bg2

C2( b f , ) - f 0 C2(bgj) - g i  (7)

C3(bft) -  i / , '  C3(bgj) - ± g (

The coefficients in Equation (7) are computed recursively: C,(fe/,), C,(bgj), / -  1,2,3 for 

/, j  -  1,..., 10. Then the cdf of the maximum in the k  ̂  class is:
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[^ ( / .^ (O l*  -  [C1(bfl) + C1(bfl)t + C3(bf,)t1]-[Cl(bSj) + C2(bgj)t + C . i b g y ]

- 2  2  cmm c „ ( b gj)tm- 2
j»2 m+ n-J

m , n - l 2 3

and the pdf is:

(8)

“ 2  2  ("»+ n - 2) Cm{bfi)Cn(bgJ) t m+n-3
3 m + n-j 

m , n - l , 2 , 3

Equation (8) is computed with the coefficients from Equation (7) to form a  piecewise- 

defined polynomial in the k ^  class of the maximum. Once the pdf of the maximum has 

been formed as this second intermediate product, it is immediately replaced by a piecewise- 

defined polygonal approximation on a partition of ten classes over its domain.

3.3 Pblygonal Approximation and Reduction Techniques (PART)

The proposed numerical approximation and reduction techniques, Polygonal 

Approximation and Reduction Techniques (PART), now consist of polygonal (linear 

polynomial) approximation of continuous activity duration distributions and series-parallel 

reduction operations coupled with one of the operative stochastic network reduction 

methods. The candidate methods are an implementation of “independent multiple arcs” 

(dual arcs) and sequential approximation. Ordered recursive conditioning, which is not a 

series-parallel reduction-based method, is not a candidate for coupling with polygonal 

approximation.
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3.3.1 “Independent Multiple Arcs” Approximation

There has been no implementation of an “independent multiple arcs” (dual arcs) 

approximation and reduction method. As discussed in Section 2.5.1 [above], an 

irreducible network can be reduced to the single equivalent arc (1,A0 by “independently 

multiplying” (duplicating) arcs with Property 1 only, or arcs with Property 2 only, or a 

combination of both. “Independently multiplied” (duplicated) arcs are not unique, and 

there may be many sequences of duplicable arcs from which to choose. Hence, an 

“independent multiple arcs” approximation reduction method could be based on 

“independently multiplying” (duplicating) the first available arc with Property 1, or the first 

available arc with Property 2, or a hybrid process, where the next arc to be “independently 

multiplied” (duplicated) is selected based on a decision rule or objective function.

If a network is not completely reducible, then the distribution function obtained by any 

“independent multiple arcs” (dual arcs) approximation and reduction process bounds the 

exact distribution function of TN, the duration of the longest path, from below, and hence:

E{TN)<iE({TN)"independent multiple area” ) (9)

Therefore, one criterion for selecting the next arc to be “independently multiplied” 

(duplicated) is the minimization of the error arising from the approximation of the 

throughput distribution TN, as measured by the overestimation of its mean.

Minimum Approximation Error Method

The following “independent multiple arcs” (dual arcs) approximation and reduction 

method will minimize the approximation error, as measured by the overestimation of the 

mean of the throughput distribution:

1. Perform series-parallel reduction on the network until no 
further reduction is possible. If the reduced network is 
trivial, i.e., has only one equivalent arc from the source 
node to the sink node, stop: the original network is 
completely reducible (completely separable), or the 
reduced network has now been completely reduced.
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2. If the reduced network is nontrivial, then it is irreducible 
(nonseparable). Choose from among the arcs with either 
Property 1 (Garman’s a activities) or Property 2 
(Garman’s b activities) the arc whose duration 
distribution (arc passage time) has the smallest variance.

a. If there are ties among the variances, pick the 
Property 1 arc (a activity) with the most 
successors or the Property 2 arc (b activity) with 
the most predecessors.

b. If there are still ties, pick arbitrarily.

3 . “Independently multiply” (duplicate) the selected arc the 
number of times necessary to achieve reducibility across 
the arc, i.e., 5 -1  times if the arc has Property 1 (a 
activity) with s  successors, or p  -1  times if the arc has 
Property 2 (b activity) with p  predecessors. Go to Step 
1.

The proof follows directly from Theorem 1 (Garman, 1972) and Dodin’s (1985b) 

definition of “duplicable arcs”, which guarantee the existence of at least one arc with 

Property 1 (a activity) and one arc with Property 2 ( b activity) at Step 2. Choosing the arc 

whose duration distribution has the smallest variance contributes the least to the inflation of 

the mean of the approximated throughput distribution per the inequality in Equation (9). 

The tie-breaker in Step 2.a. was suggested by Garman (1972) for conditioned Monte Carlo 

simulation of stochastic networks, and seems reasonable for extension here. Step 3 

assures that the selected arc and its associated successor node (if Property 1) or predecessor 

node (if Property 2) are “independently multiplied” (duplicated) the minimally sufficient 

number of times to neutralize the node as a point of irreducibility (nonseparability) in the 

network.

While this method has the attraction of minimizing the approximation error, it is, on the 

other hand, one of the most computationally demanding implementations of “independent 

multiple arcs” (dual arcs) approximation and reduction. At Step 2 , all the arcs with 

Property 1 (a activities) and all the arcs with Property 2 (b activities) must be located in
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the current configuration of the network, and the variances of their duration distributions 

compared, in order to identify the arc to be “independently multiplied” (duplicated). Not 

including the calculation of variances, the complexity of this search task is 0 { N 2). For 

moderate or large networks, this may be too high a run time penalty to be forced to pay, 

particularly if the error accumulation in a less computationally demanding implementation, 

such as a method based on the first arc encountered with Property 1 (a activity) or the first 

arc encountered with Property 2 (b activity), is not unacceptable.

First Available Arc Methods

“Independent multiple arcs” (dual arcs) approximation and reduction methods based on 

first available arcs may search the network in either the forward or backward direction for 

points of irreducibility (nonseparability), i.e., cross-connections. These methods series- 

parallel reduce all reducible subnetworks as they are encountered. Then, when the last 

cross-connection has been located and removed, only one reducible subnetwork will 

remain to be reduced. The following forward search method is based on the first available 

arc with Property 1 (a activity). The notation follows Dodin (1985b) (Section 2.5.1 

[above]).

1. Series-Parallel reductions:

a. Beginning with the second node, search the nodes 
through node N - 1 in ascending order for all 
nodes i such that |B(i)| -  |A(i)| -  1. At each of 
these nodes, series-reduce (convolve) the  
subnetwork consisting of the single arc terminating 
at the node and the single arc emanating from the 
node.

b. Beginning with the first node, search the nodes 
through node N  -1  in ascending order for pairs of 
arcs both of whose starting nodes are the same 
node i and both of whose ending nodes are the 
same node j .  Parallel-reduce the subnetworks 
consisting of each these pairs of arcs with 
maximum operations. Go to Step l.a.
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c. When no more series-reductions or parallel- 
reductions are possible:

(1) If there is only a single equivalent arc 
between the source node and the sink node, 
the network reduction is complete. Stop.

(2) Otherwise, the network is now irreducible.
Go to Step 2.

2. Beginning with the second node, search the nodes 
through node N - 2  for the first node i such that 
|B(/)| - 1  and |A(/)|fc 2. This node is the first cross- 
connection in the network, and the single arc terminating 
at the node is the first available arc with Property 1 (a 
activity). “Independently multiply” this arc |A(/)|— 1 
times to remove the cross-connection. Go to Step 1.

Again, the proof follows directly from Theorem 1 (Garman, 1972) and Dodin’s (1985b) 

definition of “duplicable arcs.” A mirror image backward search method would be based 

on the first available arc with Property 2 (b activity).

Computer Implementation

The computer program for a PART algorithm using “independent multiple arcs” 

approximation based on the first-available-arc-with-Property 1 method is in Appendix A. 

Network reduction is controlled by the main program with the forward search method. 

Continuous activity duration distributions and intermediate products from series-parallel 

reduction operations are linearized in subroutine LINEAR by polygonal (linear polynomial) 

approximation (Section 3.2.1 [above]). Series reduction operations are conducted in 

subroutine SERIES (Section 3.2.2 [above]), and parallel reduction operations are 

conducted in subroutine PARA (Section 3.2.3 [above]). Subroutine SORT does the class 

boundary point sorting required for series-parallel reduction operations. Data are input 

through three files: network structure, activity duration distributions, and program control 

information. There are eight different output options, including analytic and graphical 

presentations of the network throughput distribution and summary statistics. Example
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program input and output are presented in Chapter 4. The validation of this algorithm is 

discussed in Section 3.5, and its performance is discussed in Chapter 4.

3.3.2 Sequential Approximation

Dodin (1980, 1985a) implemented sequential approximation using discretization of 

continuous activity duration distributions (Section 2.5.2 [above]). If discretization is 

replaced by polygonal (linear polynomial) approximation, a sequential approximation 

algorithm should be more efficient and require less computer storage for network 

reduction, because polygonal approximations take up less array space and can be 

manipulated faster than discretizations of continuous activity duration distributions which 

are sufficiently dense to yield comparable output accuracies.

The computer program for a PART algorithm using sequential approximation is in 

Appendix B. The algorithm follows the flowchart in Figure 17, except that discretization is 

replaced by polygonal approximation. Network reduction is controlled by the main 

program with the sequential approximation method (Section 2.5.2 [above]). Continuous 

activity duration distributions and intermediate products from series-parallel reduction 

operations are linearized in subroutine LINEAR by polygonal approximation. Series 

reduction operations are conducted in subroutine SERIES, and parallel reduction operations 

are conducted in subroutine PARA. Subroutine SORT does the class boundary point 

sorting required for series-parallel reduction operations. Data are input through three files: 

network structure, activity duration distributions, and program control information. Any 

node can be designated on an Output Critical List for output report of the throughput 

distribution through that node. There are eight different output options, including analytic 

and graphical presentations of the node and network throughput distributions and summary 

statistics. Example program input and output are presented in Chapter 4. The validation of 

this algorithm is discussed in Section 3.5, and its performance is discussed in Chapter 4.
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3.4 Large Network Approaches

3.4.1 Network Decomposition

One approach to handling large networks is network decomposition: breaking the 

network apart into subnetworks that can be separately reduced, and then combining the 

results. For most networks, it is not immediately or intuitively clear whether such a 

decomposition is possible, much less how to effect a decomposition when one is possible. 

Research focused on aggregation/disaggregation techniques as a means to identify 

subnetworks in decompositions of large networks has met with limited success (Section

2.8.1 [above]).

Even with the power of present-day computing systems, the problem of decomposing a 

large network may be intractible, unless the network is completely reducible. If a large 

network is not completely reducible, it can only be partially reduced through the repeated 

application of series-parallel reduction operations until an equivalent irreducible network is 

reached. By Theorem 2, the irreducible network contains one or more interdictive graphs; 

these may be either direct, i.e., exactly as shown in Figure 12, or embedded, i.e., where 

the nodes involved in the cross-connection are not adjacent to each other in the network, 

but are connected by arcs in such a manner as to achieve the effect of Figure 12. The 

interdictive graph, which is the minimal-form irreducible network, cannot be decomposed. 

Consequently, any decomposition of a large network, which is not completely reducible, 

must be such that each interdictive graph contained in the network is contained within one 

of the subnetworks of the decomposition. Hence, the problem of decomposing a large 

network includes the problem of identifying all the interdictive graphs, either direct or 

embedded, which are contained in the network. There is no efficient solution technique for 

this identification problem; moreover, the problem appears to be NP-complete (Dodin, 

1985b). For this reason, the K most critical paths has emerged as the more promising, 

alternate approach for large networks.
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3.4.2 The K  Most Stochastically Dominating Paths

Dodin (1984) implemented a heuristic for identifying the K  most stochastically 

dominating paths using discretization of continuous activity duration distributions (Section

2.8.2 [above]). If discretization is replaced by polygonal (linear polynomial) 

approximation, a AT-most-stochastically-dominating-paths algorithm should be more 

efficient and require less computer storage for network reduction, again because polygonal 

approximations take up less array space and can be manipulated faster than discretizations 

of continuous activity duration distributions which are sufficiently dense to yield 

comparable output accuracies.

The computer program for a PART algorithm for large network approximation and 

reduction is in Appendix C. The algorithm computes all activity criticality, normalized 

activity criticality, node criticality, and normalized node criticality indices for a network, 

and identifies the K  most stochastically dominating paths. Computation of criticality 

indices is controlled by the main program with the method discussed below. The K  most 

stochastically dominating paths are identified in subroutine DOMPTH, which follows the 

flowchart in Figure 17, except that discretization is replaced by polygonal approximation. 

Subroutine COMPAR computes probabilities of the form P(£, a  E2). Continuous activity 

duration distributions and intermediate products from series-parallel reduction operations 

are linearized in subroutine LINEAR by polygonal approximation (Section 3.2.1 [above]). 

Series reduction operations are conducted in subroutine SERIES (Section 3.2.2 [above]), 

and parallel reduction operations are conducted in subroutine PARA (Section 3.2.3 

[above]). Subroutine SORT does the class boundary point sorting required for series- 

parallel reduction operations. Data are input through three files: network structure, activity 

duration distributions, and program control information. Example input and output from 

this program are presented in Chapter 4. The validation of this algorithm is discussed in 

Section 3.5, and its performance is discussed in Chapter 4.
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Computation of Criticality Indices

In a network (N,A)  with path set P,  the criticality index CR of a path x, €EP is the 

probability that the duration Z(x,) of the path is greater than or equal to the duration of 

every other path:

CR(ji, ) -  P[Z(ji,) i:Z(jiq) for all n q EP] 

and the criticality index of an arc at] EA is defined as the sum of the criticality indices of all 

paths x,  containing the activity:

CA(atj) ~  2  CR(n,)
{*,1aj&t,)

(Sections 2.6.2 and 2.8.2 [above]). To directly compute path criticality indices, and hence 

activity criticality indices, requires the complete enumeration and storage of all paths 

through the network, which can be computer run-time and memory prohibitive for large 

networks. Alternatively, activity criticality indices can be computed indirectly by exploiting 

the observation that:

CA{atJ)  -  \ C R ( : h )

-  2  Ptz (*i) ZK ) for 811 e/>]

-  P(duration of all paths which include atj 2

duration of all other paths)

-  P(duration of all paths which include atj 2

duration of the max of all other paths )

The following procedure, adapted from Dodin (unpublished computer code), computes 

CA(at]) as the latter probability:
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1. For each node i, i -  2,... ,N , recursively determine the 
forward distribution through the node, as:

max [(duration of a  predecessor arc to node i )
© ( forward distribution through that arc 1 s 

starting node)]

2. For each node i, / -  N - recursively determine 
the backward distribution from the node, as:

max [(duration of a successor arc to node / )  
©(backward distribution from that arc 's 

ending node)]

From this point on, the procedure is backward recursive.
Assume nodes N through i +1 have been processed and
that node /, i z  2, is next to be processed.

3. At node/:

number of paths to be considered
-  number of paths considered at node (/ +1)

and all paths which were considered at node (i +1) will 
again be considered at node i , except those paths whose 
predecessor arcs, as defined at node (i +1), start at node
i. Bring the distributions of those paths forward from 
node (i + 1) to node i .

4. For each predecessor arc of node i , determine:

duration of all paths which include that 
predecessor arc

-  (forward distribution through the start node
of that predecessor arc)

© (duration of that predecessor arc)
© (backward distribution from node /)
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5. Determine:

max [durations of all paths considered at node (i + 1), 
except those paths whose predecessor arcs, as 
defined at node (/ +1), start at node i]

6. For each predecessor arc of node i, determine:

max[max of durations of all paths considered 
at node (/ +1), except those paths whose 
predecessor arcs, as defined at node (i +1), 
start at node i; and, 

duration of all paths which include the 
Jfcth predecessor of node k * j ]

-  duration of all paths which do not include the 
yth predecessor arc of node i

7. Then, for each yth predecessor arc of node /.determine:

Induration of all paths which include the 
yth predecessor arc of node i & 
duration of all paths which do not include 
the yth predecessor arc of node i )

-  criticality index of the yth predecessor arc of node i
-  CA (yth predecessor arc of node i )

The activity criticality indices CA of all the activities in the network are recursively 

determined by this procedure by Equation (10), as the activity criticality indices of the y^1 

predecessor arcs of node /, i The criticality indices of the nodes are then

computed from the CA's:

criticality index of node i -  ^ CA(Jih successor activity of node i) i -  -1
J

criticality index of node N  -  ^  CA(jth predecessor activity of node N)

(10)
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The normalized activity criticality and node criticality indices follow as:

activity criticality indexnormalized activity criticality index -

normalized node criticality index -

node criticality index of node N

node criticality index_____
node criticality index of node N

Computation of Probabilities of the Form P (El i  E2)

During the computation of the activity criticality indices and the identification of the K 

most stochastically dominating paths, it is necessary to compute probabilities of the form 

P(£, where and are path events, such as in Equation (10). Subroutine 

COMPAR computes these probabilities, using the following approach. Suppose that El is 

described by the random variable (duration) /, whose distribution is currently approximated 

by the polygonal approximation /  which is piecewise-defined on a ten-class partition with

class boundaries b f v b f 2  b f u - f u p p a b o m id  over its dom ain

[ / lo w e r  b o u n d ./u p p e r b o u n d ]. a n d  t h a t  ^  is described by the random variable t2 whose 

distribution is similarly currently approximated by the polygonal approximation g which is 

piecew ise-defined on a ten-class partition w ith class b o u n d a r i e s

Slower bound -  * & .  b g 1 , . . . , b g l l  - £  u p p e r  bound O V e r  i tS  d o m a i n  [ f lo w e r  bound’ S  upper bound! * O v e r  i t S

i th class, /  is defined by:

/ / ' . ) - / ; + a

and over its yth class, g is defined by:

g j W - g i + g i h

The joint distribution of /, and ^  is defined on the ten-class by ten-class rectangle,

' / l o w e r  *  ' l  *  /u p p e r .  Slow er S u p p er) W ' t h  c l a S S  b o u n d a r i e s  ( b f ^ b g j )  ,  / J  -  1,...,11.

P(E, i  Ej) -  P(/, i  t2) is the accumulated probability under the joint pdf of /, and t2 over 

the shaded area in the rectangle below the line /, -  t2 as shown in Figure 28.
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bgOD

bg(2)

bg(l)

and are assumed to be independent, though they clearly are not if they have any 

common activities. Under the assumption of independence, the pdf of the joint distribution 

of ^ and ^ is:

[ / . s X W -/(* ,)•« ( /,)

The joint distribution function obtained under the assumption of independence bounds the 

exact joint distribution of tx and ^ . The bound depends on the lost dependency, which 

depends on the number of common activities between and E2 and the criticality of these 

activities. If and have no common activities, then the joint distribution obtained 

under the assumption of independence is equal to the exact joint distribution of f, and ^ . 

If, on the other hand, El and have one or more common activities, then the joint 

distribution obtained under the assumption of independence bounds the exact joint 

distribution from below, analogous to the situation with the “independent multiple arcs” 

reduction method (Esary et al., 1967; Dodin, 1985c).
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PCE, a  £ j)  -  P(/, 2 t2) is obtained by computing the contribution from each of the 100 

rectangular classes in the domain of the approximated joint distribution and then totaling 

those contributions. The contribution from each class is the probability under the joint pdf 

of /, and ^  over the area within the class below the line f, -  t2. There are six cases, as 

shown in Figure 29. If the class lies entirely above the line t, -  t2 [Part (a) of Figure 29], 

the contribution from the class is zero. If the class lies entirely below the line t2 -  t2 [Part 

(b) of Figure 29], the contribution from the class is the probability under the joint pdf of 

tl and /, over the entire class. If the class straddles the line /, -  ^  [Parts (c) - (f) of Figure 

29], the contribution from the class is the probability under the joint pdf of t, and t2 over 

the portion of the class which lies below the line -  tj. The geometry of the straddle 

affects the limits of integration as shown below. The 100 classes are considered in 

succession. Each class is first tested to determine which of the six cases applies to the 

class, using a set of recognition criteria, which are inequality relationships among the class 

boundaries arising from the geometries shown in Figure 29. Then the contribution to 

P ( £ , i £ j )  is computed as the double integral of the joint pdf of tl and t2 over the portion 

of the class which lies below the line /, - 12. The recognition criteria, integration 

formulations, and intermediate coefficients for the (/, j )  class are as follows:

Intermediate coefficients:

C „- -  b8jJ  + -  b g j ) gtibgj+i-bgj)+lj(bgj+l2- b g / )

f'oigibgj +~~bgj) ^ - f i g i b g j + f b g / )

Cj - , fX  1 C, - \f\gi
L 3 6 J 8
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Case 1. [Part (a) of Figure 29]:

Recognition criteria: bful s  bgj

Contribution from class:

[P(£;fc£2)]dB.-o

Case 2. [Part (b) of Figure 29]:

Recognition criteria: bgj+l s  bf(

Contribution from class:

[P(£; a: £^)]d„,

fb/, f b% + A ) (S o  + 8 ih )dt2dt\

giibgj.t -  bgj) + Y^bgj*I2 -  bgj2)

Case 3. [Part (c) of Figure 29]:

Recognition criteria: bgj < bft < bgJ+l < bfM

Contribution from class:

[P (£ >  £,)]„„.

t !  X , (/°  +J^ lXg° + 8^ )dt2<itl+ +d h )d t1dtl

Co + C ^ b g ^  -  bf() + C2(bg)+l -  bf f )  + C3(bgj+l -  bff) + C4( ^ ; +1 -  bf<)
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Case 4. [Part (d) of Figure 29]:

Recognition criteria: bf{ s  bgj < bgj+l < bfi+l

Contribution from class:

[P (£ ;fe^ ) ] da.

~fbl f l y *  + + m s i  +gih)dhdh

-  C0 + Cx(bg^x - b gj) + C2{bg%x -  bgj1) + C3(bgj+1 -  bgj )  + C4( ^ ; +1 -  bgj4)

Case 5. [Part (e) of Figure 29]:

Recognition criteria bfx s  < b/l+1 s  6gy+1

Contribution from class:

[P(£l a  J^)]d,„

-  ( / .  + + &'**) dtidti

-  C ,(¥ ,+1 -  t y )  + C2(bfi+l2 -  bgj1) + C3(bfi+J -  bgj3) + C4(&/I+4 -  ** /)

Case 6. [Part (0  of Figure 29]:

Recognition criteria bgj <bft < bfi+l < bgJ+l

Contribution from class:

[P < 3 * ^ ) 1 * .

+ + g ^ d ^ d t ,

-  Q ¥ , +1 -*>/,) + C2(fc/I+1z -  ft/,2) + C,(6/,+13 -  6/,3) + C4(fc/I+14 -  6 /4)
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bg(j)
bf(i+1)bf(i)

t ( 1 ) = t ( 2 )  b f ( i+ l )

(a)

t (1 ) = t(2)

bgu+i)

b f ( i + l )

(b)

bg Q+1)
t ( 1 ) = t ( 2 )

bf( i )

bgQ)

b f ( i )  bgQ+1)  b f ( i + 1 )

t ( 1 ) = t ( 2 )
b g Q + 1 )

bgQ)

(c)

t ( i y =  t(2 )

b f( i )  b g Q )  b g ( j + 1 )  b f ( i+ 1 )  

(d)

b g Q + 1 )  

b f ( i + 1 ) -

bgQ)
b f ( i )  b g Q ) b f ( i + 1 )

t ( 1 ) =  t ( 2 )
b g Q + 1 )  
b f ( i + 1 ) -

bf( i )

bgQ)

bf( i ) b f ( i+ 1 )

(e) (0

Figure 29. Contributions of joint distribution classes to P(£, a  E2).
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To control error build-up from the polygonal approximation, after P(E, st E^) has been 

computed, the value is normalized so that the probability under the approximated joint pdf 

is one:

correction factor ( CF) -  1.0 / computed probability under approximated joint pdf 

CF -

3.5 Validation Approach

Three PART algorithms, based on polygonal (linear polynomial) approximation, have 

been developed: a PART algorithm using “independent multiple arcs” approximation based 

on the first-available-arc-with-Property 1 method, a PART algorithm using sequential 

approximation, and a PART algorithm for identifying the K  most stochastically dominating 

paths for large network approximation and reduction. To validate the polygonal 

approximation and reduction technique for stochastic project management networks, these 

algorithms must be empirically tested, and their performance during the testing must be 

carefully observed and evaluated. The framework for the controlled execution of this 

testing is design of experiments (DOE). Since activity duration distribution parameters can 

take on an infinite number of values, traditional experimental designs, such as factorials, 

cannot be employed. Rather, an effective experimental design must be specified which 

forces the algorithms to demonstrate performance under challenging conditions.
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3.5.1 Design of Experiments

The DOE approach to evaluating the performance of computer algorithms begins with 

the identification of the characteristics of the problem which influence the performance of 

the algorithms in solving the project Test problems are generated with sufficient variations 

in these characteristics so that any sensitivity in the performance of the algorithms to the 

characteristics can be detected and explained, and metrics are specified so that how closely 

the algorithms approximate the solutions to the test networks can be measured and 

assessed. The solutions to the test problems must be known or obtainable; otherwise, 

surrogates are generated independent of the algorithms.

For stochastic project management networks, these characteristics are: the number of 

nodes, the number of activities (arcs), the network structure, and the distributions of 

activity durations and their parameters. “Strongly randomized [test] networks” (Dodin, 

1985a) are obtained when, at the minimum, the network structure (for a given number of 

nodes, N , and a given number of activities, A), the distributions of activity durations, and 

their parameters are randomly determined. Since stochastic project management networks 

cannot be analytically solved - the throughput distribution determined for small and 

moderate-sized networks, and the K  most stochastically dominating paths identified for 

large networks - the results of extensive simulations serve as surrogates for the network 

solutions. The closeness of the algorithms’ approximations to the simulation results, taken 

as the “true” solutions, is measured by goodness-of-fit tests, in the case of the throughput 

distributions, and, for large networks, by the numbers of activities which match between 

the K most stochastically dominating paths and the K most critical paths. Since not all 

combinations of network size (numbers of nodes and activities) and structure, and 

distributions of activity durations and their parameters, can be considered, even within a set 

of ranges of values of these characteristics, a traditional experimental design, such as a 

factorial design, cannot be employed. If maximum randomness is the design criterion,
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then, at best, network size and structure can be randomly selected from predetermined 

ranges of values of N  and A, and distributions of activity duration can be randomly 

selected from a set of available distribution types and their parameters randomly selected 

from ranges of values of those parameters. A better criterion, however, is how great a 

challenge a randomly constructed test network presents to the algorithms charged with its 

solution. A pair of activity duration distributions with “high” variances, i.e., whose 

standard deviations are high percentages of their means (high coefficients of variation), is 

the most difficult convolution for a numerical approximation-based series-reduction 

operator, while a pair of maximally overlapping activity duration distributions is the most 

difficult for a numerical approximation-based parallel-reduction operator to reduce. An 

effective experimental design for algorithm testing, then, is to:

specify representative sets of activity duration distributions which contain

pairs (or higher multiples) of distributions with “high” variances and pairs

(or higher multiples) of maximally overlapping distributions;

then, for each set of distributions, construct a set of test networks by

randomly selecting network size and structure from predetermined ranges of

values of N  and A and all activity duration distributions from that set of

distributions.

If the sets of test networks are sufficiently large, some of the test networks will contain 

combinations of activity duration distributions which are quite challenging for the 

approximation-reduction algorithms to resolve with accuracy, while others of the test 

networks will be less challenging for the algorithms. Algorithm performance should be 

uniform across the sets of distributions and test networks.

Computer Implementation

The computer program for the validation version of a PART algorithm using 

“independent multiple arcs” approximation based on the first-available-arc-with-Property 1
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is in Appendix D; the computer program for the validation version of a PART algorithm 

using sequential approximation is in Appendix E; the computer program for the validation 

version of a PART algorithm for identifying the K most stochastically dominating paths 

for large network approximation and reduction is in Appendix F. These programs can 

accommodate networks with up to 100 nodes and up to 99 activities emanating from a 

node. (In a fully connected network with 100 nodes, there are 99 activities emanating from 

the source node to every other node.) Up to 100 “strongly random” test networks may be 

specified to be generated during each run of the programs which approximate the 

throughput distribution; there is no number-of-runs restriction on the program for large 

network approximation and reduction. The number of nodes, A, in the test networks to be 

generated may be specified between 2 and 100; if 0 is input, the number of nodes is 

randomly selected from between 2 and 100. The number of activities, A , in each of the 

test networks to be generated may be specified between LA -  N -  1, the minimum number 

of activities in a network with N  nodes, and UA -  N (N  -1 ) / 2, the maximum number of 

activities in a fully connected network with N  nodes; if 0 is input, the number of activities 

is drawn as a random value from the normal distribution which closely approximates the 

distribution of A:

(Section 2.7.2 [above]). The specified number of random test networks with N  nodes and 

A activities are generated by subroutine GENRAN, following the deletion method (DM) in 

Figure 20 if A a N(N  -1 )  / 4 or the addition method (AM) in Figure 21 if otherwise. Each 

test network is then reduced by the PART algorithm of the particular validation program 

being run. To obtain a surrogate for each test network’s solution, the network is 

extensively simulated; up to 10,000 simulation replications may be specified. The 

simulation results are then statistically compared with the algorithm output. Viewed
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collectively across all the test networks generated and reduced, these comparisons 

characterize the performance of the PART algorithm of the particular validation program 

being run.

3.5.2 Throughput Approximation with Simulation

In the computer programs for the validation versions of PART algorithms using an 

“independent multiple arcs” approximation method and the sequential approximation 

method, subroutine SIMULT simulates the throughput distribution during the 

simulation replication using the following procedure:

1. Generate a random value, ttj, from the activity duration 
distribution of each activity, atj, in the network.

2. Generate the critical path to each node by computing the 
simulated duration (time) through each node /, TSIM(i).

a. TSIM(l)~0.

At Step 2.b., the procedure is forward recursive.
Assume nodes 2 through i -1  have been processed 
and that node /, i a: N , is next to be processed.

b. At node/:

(1) Determine the predecessor nodes j  to node 
/ and the activities ajt which connect nodes 
j  to node i .

(2) Compute the simulated time through node i 
as:

TSIM(i) -  max[TSIM(j) + tJt]

(3) If / < N,  go to Step 2.b. If / -  N,  go to 
Step 3.

3. Store the simulated time through the n e tw o rk ,
TSIM(N) , for the k ^  simulation replication.
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S ( x )

Figure 30. The Kolmogorov-Smimov Goodness-of-Fit Test 
[Adapted from Conover (1980)]

The Kolmogorov-Smimov goodness-of-fit test is then used to compare the polygonal 

approximation of the throughput distribution developed by the PART algorithm of the 

particular validation program being run with the simulation approximation of the 

throughput distribution.

The Kolmogorov-Smimov Goodness-of-FitTest2

The Kolmogorov-Smimov (K-S) one-sample goodness-of-fit test is used when 

examining a random sample from some unknown distribution in order to test the null 

hypothesis that the unknown distribution is, in fact, a known, specified distribution with 

cdf F ’(x). The random sample is compared with F’(x) by means of the empirical 

distribution function (sample cdf), S(x),  to see if there is “good” agreement. If there is not 

sufficiently “good” agreement between F’(x) and S(x),  the null hypothesis is rejected; 

otherwise, it is not rejected. The K-S test statistic T is the maximum vertical distance 

between the graphs of F \x )  and S(x),  as shown in Figure 30:

-Discussions of the Kolmogorov-Smimov goodness-of-fit tests can found in numerous nonparametric 
statistics texts. For example, Conover (1980) presents a thorough treatment.
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T  -  suplF*(x)-S(;r)l
X

(“sup” is the supremum, or greatest). Quantiles of the distribution of T  are tabulated in the 

literature. They are exact whenever the hypothesized distribution is continuous (Noether, 

1967).

When the number of simulation replications is large, the simulation approximation of 

the throughput distribution may safely be considered the “true” throughput distribution, and 

hence a one-sample Kolmogorov-Smimov goodness-of-fit test may be used. To compute 

the value o f the K-S test statistic, the domain of the polygonal approximation of the 

throughput distribution, obtained from the PART algorithm of the particular validation 

program being run, is partitioned with a set of equal size classes. Fergeson and Shortell 

(1978) found the best results are achieved when the number of classes in the partition is 50. 

The linear polynomial functional representations of the polynomial approximation of the 

throughput distribution are used to compute the area under the approximated pdf in each 

class of the partition. Then an approximated cdf of the throughput distribution, TOTAAR, 

is constructed by summing the areas under the approximated pdf through each of the 51 

boundary points of the partition. A cumulative frequency histogram, SIMTOT, of the 

stored, simulated times through the network, TSIM(N) , is then constructed over the 

partition by sorting the time values into the 50 classes of the partition and then summing the 

numbers of time values in the classes through each of the 51 boundary points of the 

partition. Constructing the approximated cdf of the throughput distribution, TOTAAR, and 

the cumulative frequency histogram of the simulated throughput times, SIMTOT, on a 

common partition of the domain of the approximated throughput distribution facilitates the 

computation of the K-S test statistic.

By virtue of its construction, the cumulative frequency histogram of the simulated 

throughput times, SIMTOT, behaves like a grouped data statistic. When viewed as such,
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the maximum separation between TOTAAR and SIMTOT occurs either just to the right or 

just to the left of one of the boundary points, so the computed value of the K-S test statisitc 

would be the maximum of the “just-to-the-left” and “just-to-the-right” differences. 

However, when the number of simulation replications is large, the simulation 

approximation of the throughput distribution may be viewed as a continuous function, and 

the values which its frequency histogram takes on at the boundary points may be taken as 

“exact” values of the throughput cdf (Dodin, 1985a). Then, the computed value of the K-S 

test statistic is just the maximum of the differences between TOTAAR and SIMTOT 

computed at the boundary points, bi, of the partition:

T -  max\SIMTOT(bt) -  TOTAAR^bt)\ i -  2,...,51

The computed value of the K-S test statistic is compared with the 1%, 2%, 5%, 10% and 

20% quantiles of the distribution of T  in order to bound the prob value: 

prob value -  P(Type I error) -  P(reject H0\H0 true) 

in an interval (<1%, 1% - 2%, 2% - 5%, 5% - 10%, 10% - 20%, or >20%). If the prob 

value is >5%, the conclusion of the K-S goodness of fit test would be that there is 

insufficient evidence to reject the null hypothesis that the polygonal approximation of the 

throughput distribution, obtained from the PART algorithm of the particular validation 

program being run, is different from the true throughput distribution at the at-least 5% level 

of statistical significance.

3.5.3 Path Criticality Approximation with Simulation

In the computer program for the validation version of a PART algorithm for identifying 

the K most stochastically dominating paths for large network approximation and reduction, 

subroutine SIMULC simulates each test network, computes simulation-approximated 

activity criticality and node criticality indices, and identifies the K  most critical paths. The
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activity criticality and node criticality indices are approximated using the following 

procedure. During the simulation replication:

1. Generate a random value, ttj, from the activity duration 
distribution of each activity, aj/, in the network.

2. Compute the earliest completion duration (time) of each 
node /, TEARLY(i).

a. TEARLY(l)~ 0.

At Step 2.b., the procedure is forward recursive.
Assume nodes 2 through / -1  have been processed 
and that node i, i s  N , is next to be processed.

b. At node i :

(1) Determine the predecessor nodes j  to node 
i and the activities a]t which connect nodes 
j  to node /.

(2) Compute the earliest completion time of 
node i as:

TEARLY(i) -  max[TEARLY(j) + /,,]

(3) If i < N ,  go to Step 2.b. If i -  N , go to 
Step 3.

3. Compute the latest completion time of each node i,
TLATE[i) , and the number of critical nodes succeeding 

node i, NOCSii).

a. TLATE(N) -  TEARLY(N) and NOCS(N) -  1.

At Step 3.b., the procedure is backward recursive.
Assume nodes N - 1 through i + l have been 
processed and that node /, / a l ,  is next to b e 
processed.
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b. At node/:

(1) Determine the successor nodes j  to node / 
and the activities atj which connect node / to 
nodes j .

(2) Compute the float of the activities aijt 
TFLOAT(atj) as:

TFLOAT{ay) -  [TLATE(j) -  ttj] -  TEARLY(i)

If TFLOATicty) -  0, activity atj is on a 
critical path(s). Set

NOCS(i) -  NOCS(i) + NOCS(j)

(3) Compute the latest completion time of node 
/ as:

TLATE(i) -  min[TLATE(j) -

(4) If / > 1, go to Step 3.b. If / - 1 ,  go to Step
4.

At Step 4., the procedure is forward recursive. Assume 
nodes 2 through / -1  have been processed and that node 
/, / s  N , is next to be processed.

4. Determine the number of times each activity atJ, the k  ^  
predecessor of node /, appears on a critical path, 
NCA(i,k), and the number of critical nodes preceding 
node/, NOCP(i). At node/:

a. Determine the predecessor nodes j  to node / and 
the activities a which connect nodes j  to node /.j i j

b. If activity ajt is the k predecessor of node / and 
TFLOAT(aJt) - 0 ,  activity atj is on a critical 
path(s). Set:

NCA(i,k) -  NCA(i,k) + NOCS(i) • NOCP(j) 
NOCP(i) -  NOCP(i) + NOCP(j)

c. H i< N ,  go to Step4. If / -  /V, stop.
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After NSIM replications of the simulation have been run, the simulation-approximated 

activity criticality indices CA and node criticality indices are computed as follows:

NCA(i,k)
sim.-approx. CA(£th predecessor activity of node /)  -------- :—

NSIM

sim.-approx. criticality index of node i -  ^CAC/th successor activity to node i),
j

i -  \,...,N -  1

sim.-approx. criticality index of node N CA(jth predecessor acti vi ty to node N )
j

The simulation-approximated normalized activity criticality and node criticality indices 

follow as:

sim .-approx. sim.-approx. activity criticality index
normalized activity criticality index sim.-approx. node criticality index of node N

sim.-approx. sim.-approx. node criticality index
normalized node criticality index sim.-approx. node criticality index of node N

To identify the K  most critical paths in a test network requires knowledge of the values 

of the path criticality indices CR of all the paths through the network. Simulation- 

approximated CRs could be obtained by enumerating all the paths in the network before 

simulation, and then, after each simulation replication, calculating the CR of each path and 

updating the average value of each path’s CR through the current simulation replication. 

This is a burdensome task, and for large networks is impractical, because of the computer 

storage required to hold the enumerated network paths during the simulation. 

Alternatively, the computer program for the validation version of a PART algorithm for 

large network approximation and reduction uses the average of the simulation- 

approximated CAs of the activities on a path as the value of the simulation-approximated 

CR of the path. If a test network has no common arcs among its paths, or if all common 

arcs have CA s equal to zero, then the average of the simulation-approximated CA s of the
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activities on a path would be the same as the simulation-approximated CR of that path 

obtained from path enumeration. If the test network has common arcs with non-zero CA s , 

then the average of the simulation-approximated CAs of the activities on a path with one or 

more of these common arcs would be greater than the simulation-approximated CR of that 

path obtained from path enumeration, because the non-zero CAs of the common arcs on 

that path reflect the occurrence of those common arcs on other critical paths as well. 

Consequently, the averages of the simulation-approximated CA s of the activities on paths 

which contain common arcs with non-zero CAs are inflated relative to the averages of the 

simulation-approximated CAs of the activities on paths which contain no common arcs or 

whose common arcs have CA s equal to zero. Moreover, this inflation is not uniform, 

since the more common arcs with non-zero CAs a path contains and the higher the CA s of 

these arcs, the higher the average of the simulation-approximated CAs of the activities on 

the path, i.e., such a path would appear more critical relative to other paths. However, 

especially in large networks, the relative ranking of the paths, based on the average of the 

simulation-approximated CAs of the activities on a path as the value of the simulation- 

approximated CR of the path, should not change compared to the ranking of the paths 

based on the simulation-approximated CR s obtained from path enumeration, if they could 

be obtained, except under unusual circumstances. Since the objective of critical path 

analysis is to identify critical paths and activities which appear on critical paths, especially 

those activities which appear on several critical paths, so that management attention can be 

focused on them to insure that they don’t incur schedule slips, the computed values of 

approximated path criticality indices are not nearly as important as the identification of the 

relatively most critical paths and any activities which appear on several critical paths, all of 

which may be deserving of special management attention.

To identify the K  most critical paths in a test network based on averaged, simulation- 

approximated CR s, all paths through the network must be enumerated and ranked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

147

Subroutine SIMULC employs a procedure adapted from Asano and Sato (1985). The 

following notation was used in their development:

For each node v , the successor nodes of v are ordered so 
that the first successor of v is denoted by fs( v) and the next 
successor of v following from v' is denoted next(v.v'). If 
v' is the last successor of v, then next(v.v') -  0 .

The path enumeration procedure is as follows:

1. Identify a  first path: Starting at the source node, node 1, 
trace the pointer fs( ) to the first successor of each node, 
performing the operation v(i) -  fs( v(i -  1)) for i -1,2,... 
until v(/) -  N .

2. Identify a new path: Find the largest i such that 
next(v(/), v{i +1)) * 0 .

a. Next path: Set v(t +1) -  next(v(/), v(i + 1)). Then 
trace the pointer fs( ) from v(i +1) to the sink 
node, node N. Go to Step 2.

b. If such an i does not exist, then all paths have been 
enumerated. Stop.

Subroutine SIMULC identifies the K most critical paths using the following procedure:

1. Enumerate K paths. Compute the averaged, simulation- 
approximated CRs of the paths. Rank the paths in 
descending order on the basis of their CRs. Store the 
rank-ordered set of K  paths.

2. Enumerate a next path. If none, stop. Compute the 
averaged, simulation-approximated CR of the path.

a. If this path’s CR is > the CR of the K ^-ranked 
path in the rank-ordered set of K paths, delete the 
K  ̂ -ranked path from the set, insert the new path 
into the set, rank the paths in the set in descending 
order on the basis of their CRs, and re-store the 
rank-ordered set of K paths. Go to Step 2.
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b. If this path’s CR is s  the CR of the AT ̂ ranked 
path in the rank-ordered set of AT paths, discard the 
path. Go to Step 2.

The rank-ordered set of AT paths contains the AT most critical paths based on averaged, 

simulation-approximated CRs. This path set is compared with the AT most stochastically 

dominating paths obtained from subroutine DOMPTH by counting the number of activities 

in common between each pair of k  ^-ranked paths, k  -  1,... ,AT.

3.6 Summary

In this chapter, a new method for numerical approximation of continuous activity 

resource consumption (duration) distributions of stochastic project management networks, 

linear polynomial (polygonal) approximation, was developed, derived from the spline 

approximations used in numerical differentiation and integration and motivated by the 

shortcomings of the first attempt at an exact solution to stochastic network reduction by 

Martin (1965). Series-parallel reduction operations based on the new method were 

described. The method was mated with three network reduction approaches - “independent 

multiple arcs” (dual arcs), sequential approximation, and a  heuristic for identifying the AT 

most critical paths - to form the members of a new family of Polygonal Approximation and 

Reduction Techniques (PART). The PART algorithm using “independent multiple arcs” 

(dual arcs) represents the first successful implementation of an arc-duplication reduction 

method. A design-of-experiments framework employing “strongly randomized” networks 

was proposed for the validation of the method and its associated PART algorithms, and 

validation versions of the PART algorithms were constructed with capabilities to simulate 

“true” network solutions. The next chapter reports the results of performance tests 

conducted to validate the polygonal approximation method and its associated PART 

algorithms.
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CHAPTER4 

RESULTS

In this chapter, polygonal approximation of continuous activity resource consumption 

distributions and series-parallel reduction operations based on polygonal approximation are 

validated for the distributions frequently encountered in stochastic project management 

networks. Then, the PART algorithms using “independent multiple arcs” approximation 

based on the first-available-arc-with-Property 1 method and sequential approximation to 

obtain network throughput distributions are validated, as is a PART algorithm for 

identifying the K most stochastically dominating paths for large network approximation 

and reduction, through comparisons with simulation results and the results obtained from 

competing approximation procedures. Finally, the run time and storage requirements of 

these PART algorithms are contrasted with those of competing approximation procedures.

4.1 Polygonal Approximation

The validation of polygonal approximation of continuous activity resource consumption 

distributions (Section 3.2.1 [above]) is illustrated with two distributions representative of 

the set which was tested. Figure 31 depicts a truncated normal distribution, defined on 

[0,10], with a mean of 5 and a standard deviation of 1.67, and its polygonal approximation 

constructed on 10 classes using:

n -  10 + integer(class width * 3) -1 3  

regression fitting points uniformly distributed across each class. Figure 32 depicts a 

truncated exponential distribution, also defined on [0,10], with a mean of 3 and its 

polygonal approximation, which was similarly constructed. (In these and later similar 

figures, the dashed line represents the pdf of the distribution, and the solid line represents 

its polygonal approximation. When the polygonal approximation is very close to the actual
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pdf, it may be difficult to distinguish between them in the illustrations.) The tabular data 

presented below the graphs permit direct comparisons of the values of the pdf (column 

labeled ACTUAL) and the polygonal approximation (column labeled APPROX) at selected 

points across the domains of definition. Tables 13 and 14 contain the class boundaries and 

the coefficients b0 and bx of the approximating polynomial:

b0 + bxt

in each class. The values of the polygonal approximation (APPROX column) were 

computed with the approximating polynomial for the class containing each of the selected 

T  values. At a class boundary, there are two approximations of the distribution at that 

point, corresponding to the approximating line segments of the class which terminates and 

the class which begins at that class boundary. Averaging the two approximation values at a 

class boundary produces a smoother fit of the polygonal approximation, but otherwise 

adversely affects the performance of polygonal approximation and reduction techniques. 

Consequently, only one of those values is presented in the tabular data at a class boundary.

When a continuous distribution which is defined over the real numbers, such as a 

normal distribution, or over the positive reals, such as an exponential distribution or a 

gamma distribution, is used to model activity resource consumption, a truncated version 

defined on a finite domain must be used with polygonal approximation. Typically, 

truncation is effected by selecting the minimum and maximum values of the finite domain 

such that the area under the pdf between these values is at least 99% of the total area under 

the pdf. If a normal distribution is truncated such that the standard deviation of the 

truncation-approximation is one-sixth of the finite domain, then 99.7% of the area under 

the theoretical normal curve will be captured by the truncation-approximation. These 

truncation conventions have been employed in the results reported here.

Figures 31 and 32 illustrate that the essential character of a continuous, curvilinear 

distribution function is retained by polygonal approximation with SLR. For the truncated
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THROUGHPUT TIME

T ACTUAL APPROX

0 . 0 0 . 0 0 2 7 0 . 0 0 1 6
0 . 4 0 . 0 0 5 3 0 . 0 0 5 8
0 . 8 0 . 0 1 0 0 0 . 0 1 0 0
1 . 0 0 . 0 1 3 4 0 . 0 1 0 9
1 . 4 0 . 0 2 3 2 0 . 0 2 4 4
1 . 8 0 . 0 3 7 9 0 . 0 3 7 8
2 . 0 0 . 0 4 ? 4 0 . 0 4 4 5
2 . 4 0 . 0 7 0 9 0 . 0 7 2 2
2 . 8 0 . 1 0 0 2 0 . 1 0 0 0
3 - 0 0 . 1 1 6 5 0 . 1 1 6 9
3 - 4 0 . 1 5 1 0 0 . 1 5 0 7
3 - 8 0 . 1 8 4 7 0 . 1 8 4 6
4 . 0 0 . 1 9 9 9 0 . 2 0 5 6
4 . 4 0 . 2 2 4 3 0 . 2 2 1 ?
4 . 8 0 . 2 3 7 6 0 . 2 3 7 8
5 . 0 0 . 2 3 9 4 0 . 2 4 5 7
5 - 4 0 . 2 3 2 6 0 . 2 2 9 7
5 - 8 0 . 2 1 3 3 0 . 2 1 3 8
6 . 0 0 . 1 9 9 9 0 . 2 0 1 4
6 . 4 0 . 1 6 8 2 0 . 1 6 7 6
6 . 8 0 . 1 3 3 6 0 . 1 3 3 8
7 . 0 0 . 1 1 6 5 0 . 1 1 3 9
7 . 4 0 . 0 8 4 9 0 . 0 8 6 1
7 . 8 0 . 0 5 8 4 0 . 0 5 8 3
8 . 0 0 . 04?4 0 . 0 4 4 6
8 . 4 0 . 0 2 9 9 0 . 0 3 1 1
8 . 8 0 . 0 1 7 8 0 . 0 1 7 6
9 - 0 0 . 0 1 3 4 0 . 0 1 2 1
9 - 4 0 . 0 0 7 3 0 . 0 0 7 9
9 - 8 0 . 0 0 3 8 0 . 0 0 3 7

Figure 31. Polygonal approximation of a normal distribution.
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2 6 10
THROUGHPUT TIME

T ACTUAL AFPP.OX

0 . 0 0 . 3 3 3 3 0 . 3 3 1 0
0 . 4 O. 2 9 1 7 0 . 2 9 3 0
0 . 8 0 . 2 5 5 3 0 . 2 5 4 9
1 . 0 0 . 2 3 8 8 0 . 2 3 7 2
1 . 4 0 . 2 0 9 0 0 . 2 0 9 9
1 . 8 0 . 1 8 2 9 0 . 1 8 2 7
2 . 0 0 . 1 7 1 1 0 . 1 6 9 9
2 . 4 0 . 1 4 9 8 0 . 1 5 0 4
2 . 8 0 . 13 11 0 . 1 3 0 9
3 - 0 0 . 1 2 2 6 0 . 1 2 1 8
3 - 4 0 . 1 0 7 3 0 . 1 0 7 8
3 . 8 0 . 0 9 3 9 0 . 0 9 3 8
4 . 0 O. 0 8 7 9 0 . 0 8 7 3
4 . 4 O. 0 7 6 9 0 . 0 7 7 3
4 . 8 O.O073 0 . 0 6 7 3
5 . 0 0 . 0 6 3 0 ' 0 . 0 6 2 5
5 - 4 O. 0 5 5 1 0 . 0 5 5 3
5 . 8 0 . 0 4 8 2 0 . 0 4 8 1
6 . 0 0 . 0 4 5 1 0 . 0 4 4 3
6 . 4 0 . 0 3 9 5 0 . 0 3 9 6
6 . 8 0 . 0 3 4 6 0 . 0 3 4 5
7 . 0 O. 0 3 2 3 0 . 0 3 2 1
7 - 4 0 . 0 2 8 3 0 . 0 2 8 4
7 . 8 0 . 0 2 4 8 0 . 0 2 4 7
8 . 0 0 . 0 2 3 2 0 . 0 2 3 0
8 . 4 0 . 0 2 0 3 0 . 0 2 0 4
8 . 8 0 . 0 1 7 7 0 . 0 1 7 7
9 - 0 0 . 0 1 6 6 O.OI65
9 - 4 0 . 0 1 4 5 0 . 0 1 4 6
9 - 0 0 . 0 1 2 7 0 . 0 1 2 7

Figure 32. Polygonal approximation o f an exponential distribution.
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Table 13. Normal Distribution Approximation.

LOWER UPPER
’ERVAL LIMIT LIMIT B(O) B ( l )

1 0 . 0 1 . 0 . 0 0 1 6 0 5 5 2 . 0 1 0 4 8 2 8 2

2 1 . 0 2 . 0 - . 0 2 2 6 4 4 2 9 . 0 5 3 5 8 4 1 8

3 2 . 0 3 . 0 - . 0 9 4 3 0 6 5 0 . 0 6 9 3 7 8 6 0

4 3 . 0 4 . 0 - . 1 3 6 7 7 3 7 4 . 0 8 4 5 6 0 0 0

5 4 . 0 5 . 0 . 0 4 4 3 4 6 7 8 . 0 4 0 3 1 1 5 9

6 5 . 0 6 . 0 . 4 4 5 4 5 0 7 7 - . 0 3 9 9 4 6 4 2

7 6 . 0 7 . 0 . 7 0 8 4 4 2 6 4 - . 0 8 4 5 0 1 8 3

8 7 . 0 8 . 0 . 6 0 0 7 5 7 9 4 - . 0 6 9 5 4 9 2 7

9 8 . 0 9 . 0 . 3 1 4 5 6 3 7 9 - . 0 3 3 7 4 4 7 6

10 9 . 0 1 0 . 0 . 1 0 7 1 2 0 4 7 - . 0 1 0 5 5 4 9 7
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Table 14. Exponential Distribution Approximation.

LOWER UPPER
INTERVAL LIMIT LIMIT B ( 0 )  B C D

1 0 . 0 1 . 0 . 3 3 1 0 1 1 3 1 - . 0 9 5 1 0 2 7 8

2 1 . 0 2 . 0 . 3 0 5 3 2 4 1 7 - . 0 6 8 1 4 4 1 8

5 2 . 0 5 .  0 . 2 6 7 6 0 1 8 1 - . 0 4 8 8 2 7 4 5

4 3 . 0 4 . 0 . 2 2 6 7 3 1 7 2 - . 0 3 4 9 8 6 4 7

5 4 . 0 5 . 0 . 1 8 7 5 2 9 2 0 - . 0 2 5 0 6 8 8 8

6 5 . 0 6 . 0 . 1 5 2 3 3 2 6 5 - . 0 1 7 9 6 2 5 4

7 6 . 0 7 . 0 . 1 2 2 0 2 4 4 9 - . 0 1 2 8 7 1 1 3

8 7 . 0 8 . 0 . 0 9 6 6 5 4 2 8 - . 0 0 9 2 2 2 2 2

9 8 . 0 9 . 0 . 0 7 5 8 6 3 8 2 - . 0 0 6 6 0 8 0 1

10 9 . 0 1 0 . 0 . 0 5 9 0 9 3 8 7 - . 0 0 4 7 3 4 8 7
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normal distribution in Figure 31, the maximum of the absolute values of the deviations 

(MADV) between the pdf and the polygonal approximation is 0.0064; for the truncated 

exponential. in Figure 32, 0.0023. In both cases, these MADVs occur at or near the 

peak/maximum value of the pdf, where it should be expected that the greatest difficulty 

would be encountered in approximating a curvilinear function with straight line segments. 

However, as the figures illustrate, the general shapes of both distributions are preserved 

under polygonal approximation, and the approximated and actual values of the pdfs are 

nearly identical. Similar results were achieved when polygonal approximation was applied 

to the uniform, triangular, gamma, and beta distributions.

4.2 Series-Parallel Reduction Operations

Validation of the application of series-parallel reduction operations to polygonal 

approximations of continuous activity resource consumption distributions (Sections 3.2.2 

and 3.2.3 [above]) is illustrated with four representatives of the combinations tested.

4.2.1 Series Reduction

The first example is the series reduction (convolution) of two uniform distributions. 

Suppose:

/  ~ uniform [4,8] and g ~ uniform [5,10]

/( / )  -0.25, 4 s f  s 8  and g( t ) -0.20, 5 s  t s  10

Then their convolution is:

upper limit

-  J(0.25)(0.20)dx
lower limit

- r a o s T i r ? ?L JlowerUmit
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The class boundary points of the theoretical solution are the bf( +bgf. 9, 13, 14, and 18; 

so, the convolution integral must be evaluated over the intervals: [9,13], [13,14], and 

[14,18]. From Equation (5), the upper and lower limits of integration are:

Interval Lower limit Upper limit

[9,13] 1 t - 5

[13,14] 4 8

[14,18] / - 1 0  8

The evaluated convolution integral yields the following final form of the series reduction:

Interval ( /© g ) (0

[9,13] 0 .0 5 /-0 .4 5

[13,14] 0.20

[14,18] -0 .05 /+  0.90

Figure 33 depicts the pdf of the convolution and its polygonal approximation, which is

defined on 10 classes over [9,18] (class width = 0.9). Table 15 presents a comparison of

the first and second moments of the series reduction as calculated from the theoretical 

convolution, as obtained from a Monte Carlo simulation (3,000 replications), and as 

calculated with grouped data statistics from the polygonal approximation (labeled PART). 

Figure 33 shows, again, that polygonal approximation experiences its greatest error near 

the peak of the distribution, but that the errors are still small (the MADV is 0.0900 near the 

peak) and the shape of the convolution distribution is maintained.

Table 15. Moments of the Series Reduction of Two Uniform Distributions.

Source Mean Standard Deviation
Theoretical 13.500 1.850
Simulation 13.487 1.853

PART 13.501 1.847
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• 15

. 1 0

. 0 5

. 0 0

T ACTUAL APPROX

9 . 0 0 . 0 0 0 0 0 . 0 0 0 0
9 - 5 o . 027 0 0 . 0 2 7 0
9 - 9 0 .0 450 0 . 0 4 5 0

1 0 . 1 0 . 054 0 0 . 0 5 4 0
1 0 . 4 0 . 07 2 0 0 . 0 7 2 0
1 0 . 8 0 .0900 0 . 0 9 0 0
1 1 . 0 0 . 099 0 0 . 0 9 9 0
H . 3 0 . 1 1 7 0 0 . 1 1 7 0
1 1 . 7 0 .13 50 0 . 1 3 5 0
1 1 . 9 0 .14 40 0 . 1 4 4 0
1 2 . 2 0 . 1 6 2 0 0 . 1 6 2 0
1 2 . 6 0 . 1 8 0 0 0 . 1 8 0 0
1 2 . 8 0 . 1 8 9 0 0 . 1 8 9 1
1 3- 1 0 .2 000 0 . 1 9 7 7
1 3 . 5 0 .2 000 0 . 2 0 6 3
1 3 . 7 0 .20 00 0 . 2 0 0 5
1 4 . 0 0 .20 00 0 . 1 9 4 1
1 4 . 4 0 . 1 8 9 0 0 . 1 8 7 7
1 4 . 6 0 . 1 8 0 0 0 . 1 7 1 0
1 4 . 9 0 . 1 5 3 0 0 . 1 5 3 0
1 5 - 3 0 .13 50 0 . 1 3 5 0
1 5- 5 0 .12 60 0 . 1 2 6 0
1 5 - 8 0 .10 80 0 . 1 0 8 0
1 6 . 2 0 . 0 9 0 0 0 . 0 8 9 9
1 6 . 4 0 .0 81 0 0 . 0 8 1 0
1 6 . 7 0 .0 6 3 0 0 . 0 6 3 0
1 7 . 1 0 .0 450 0 . 0 4 9 9
1 7- 3 0 .03 60 0 . 0 3 6 0
1 7 . 6 0 .0 18 0 0 . 0 1 8 0
1 8 . 0 0 .0 00 0 0.00.00

17
11

THROUGHPUT TIME

Figure 33. Series reduction of two uniform distributions.
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The second example is the series reduction (convolution) of two normal distributions. 

Suppose:
/  ~ normal (7,2), truncated on [1,13] 

and
g ~ normal (13,1), truncated on [10,16]

The normal distribution is auto-reproductive under convolution (Parzen, 1960). The 

parameters of the convolution of two normal distributions are:

a “ VCT/ +c ^
minimum -  min/  + min g 
maximum -  max /  + max g

and the final form of this example convolution is:

/ © g ~  Normal (20,2.236), truncated on [11,29]

Figure 34 depicts the pdf of the convolution and its polygonal approximation, which is

defined on 10 classes over [11,29] (class width = 1.8). Table 16 presents a comparison of

the first and second moments of the series reduction obtained by the same methods as the

data in Table 15. In Figure 34, the straight line segments appear to only roughly

approximate the pdf of the convolution in the region near the peak. The polygonal

approximation exhibits a spiking feature as it overshoots the peak, just before it falls back

to a value just below the peak. Spiking occurs whenever a distribution has a peak, and the

effect is the greatest when a class boundary point falls at or very near the peak. However,

the MADV for this convolution of two normal distributions, at the peak, is only 0.0158.

Table 16. Moments of the Series Reduction of Two Normal Distributions.

Source Mean Standard Deviation
Theoretical 20.000 2.236
Simulation 20.020 2.222

PART 20.085 2.208
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1 1 . 0 0 .0 00 1 0 . 0 0 0 0
1 2 . 2 0 . 0 0 0 4 0 . 0 0 0 3
1 2 . 8 0 . 00 1 0 0 . 0 0 0 0
l 4 . 0 0 . 0 0 4 9 0 . 0 0 4 6
1 4 . 6 0 . 0 0 9 7 0 . 0 0 8 1
1 5 - 2 0 . 0 1 7 8 0 . 0 1 7 4
1 5 - 8 0 . 0 3 0 6 0 . 0 2 6 7
1 6 . 4 0 . 04 8 8 0 . 0 3 5 9
1 6 . 7 0 . 0 6 0 0 0 . 0 6 1 7
1 7 - 3 0 . 0861 0 . 0 8 4 0
1 7 - 9 0 .1 1 4 8 0 . 1 0 6 4
1 8 . 2 0 . 1 2 9 0 0 . 1 3 0 4
1 8 . 8 0 .1 5 4 5 0 . 1 5 1 4
1 9 - 4 0 . 1 7 2 1 0 . 1 7 2 3
2 0 . 0 0 . 1 7 8 4 0 . 1 9 3 3
20 .  3 0 .1 7 6 8 0 . 1 6 9 6
2 0 . 9 0 .1 6 4 5 0 . 1 6 3 9
2 1 - 5 0 .1 4 2 5 0 . 1 5 8 2
2 1 . 8 0 . 12 9 0 0 . 1 3 4 7
2 2 . 4 0 . 1 0 0 3 0 . 1 0 4 3
2 3 . 0 0 .0 7 2 5 0 . 0 7 3 9
2 3 . 6 0 .0 4 8 8 0 . 0 4 3 5
2 3 . 9 0 . 03 9 0 0 . 0 3 8 1
2 4 . 5 0 .0 2 3 5 0 . 0 2 6 4
2 5 - 1 0 .0 1 3 2 0 . 0 1 4 6
2 5 . 4 0 .0 0 9 6 0 . 0 1 0 2
2 6 . 3 0 . 0 0 3 4 0 . 0 0 5 1
2 7 . 2 0 . 001 1 0 . 0 0 0 0
2 7 . 5 0 . 0 0 0 6 0 . 0 0 0 5
28 .  ? 0 .0 0 0 1 0 . 0 0 0 1

Figure 34. Series reduction of two normal distributions.
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The third example is the series reduction (convolution) of two exponential distributions. 

Suppose:
/  ~ exponential (p  -  3), shifted onto [1,10] 

and
g ~ exponential (p -  25), shifted onto [20,43]

Then, after shifting:

f i t )  -  fe~*(,_I>, 1 s  t s  10 and g(t) -  •ye"*(/"zo>, 20 s  / a: 43 

and their convolution is:
f  ®g -  J f  (T)g(t - x ) d x

upper limit
1 ^-03r-0.2t+4.5 ̂/ i

u»e
lower limit

[_  J .e -0 .3 r -° .2 l+ 4 .5  >?***■
3 Jow er limit

The class boundary points of the theoretical solution are the bft + bgj : 21, 30, 44, and 53;

so, the convolution integral must be evaluated over the intervals: [21,30], [30,44], and 

[44,53]. From Equation (5), the upper and lower limits of integration are:

Interval Lower limit Upper limit

[21.30] 1 i -  20

[30.44] 1 10

[44.53] r -  43 10

The evaluated convolution integral yields the following final form of the series reduction:

Interval (f ® g ) ( t )
1 -0 .2 / + 4 .5 / -03(/-2 (J) -0 3  \[21.30] - j e  [e ’ - e  )

1 -0 .2 /+ 4 .5 /  -3  - 0 3  \
[30.44] - t «  \e - e  )

1 -0 .2 /+ 4 .5 1 -3  - 0 3 ( f - 4 3 ) \[44.53] s e  [e - e  *)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

161

Figure 35 depicts the pdf of the convolution and its polygonal approximation, which is 

defined on 10 classes over [21,53] (class width = 3.2). Table 17 presents a comparison of 

the first and second moments of the series reduction obtained by the same methods as the 

data in Table 15. In Figure 35, the straight line segments again appear to only roughly 

approximate the pdf of the convolution in the region near the peak; the MADV, at the class 

boundary 24.2, is 0.0320. The polygonal approximation again exhibits a spiking feature 

as it overshoots the peak, just before it falls back to a value which is, this time, just above 

the peak. Unfortunately, this type of “extreme” spiking is characteristic of the series 

reduction of any pair of exponential distributions, because of the steep slopes of the 

convolution pdf on either side of the peak. This is the same effect which motivated Dodin 

(1980,1985a) to employ the equal probabilities method only in the discretization of 

exponential distributions, while employing the equal intervals method for all other 

continuous distributions. Because of this effect, the performance of polygonal 

approximation and reduction techniques degrades as the percentage of exponential activity 

resource consumption distributions increases in project management networks. In such 

cases, to maintain accuracy, the number of classes in the partition of the domain of each 

distribution must be increased in the polygonal approximation.

When series-parallel reduction operations were applied to polygonal approximations of 

triangular, gamma, and beta distributions, the behavior was similar to that experienced with 

the normal. Although some spiking occurred near all distribution peaks, the “extreme” 

spiking effect was restricted to the convolution of exponentials.

Table 17. Moments of the Series Reduction of Two Exponential Distributions.

Source Mean Standard Deviation
Theoretical 27.672 4.796
Simulation 27.975 5.110

PART 27.491 4.754
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. 1 0

. 0 5

. 0 0
21

T

THROUGHPUT TIME 

ACTUAL APPROX

2 1 . 0 0 . 0 0 0 0 0 . 0 3 1 0
2 1 . 8 0 . 0 6 0 6 0 . 0 5 8 4
2 2 . 6 0 . 0 9 2 3 0 . 0 8 5 7
2 3 . 4 0 . 1 0 5 9 0 . 1 1 3 1
2 k . 2 0 . 1 0 8 5 0 . 1 4 0 4
2 k . 6 0 . 1 0 7 3 0 . 1 1 0 0
25.  4 0 . 1 0 1 3 0 . 1 0 1 7
2 6 . 2 0 . 0 9 3 1 0 . 0 9 3 3
2 7 . 0 0 . 0 8 3 8 0 . 0 8 5 0
2 7 . 4 0 . 0 7 9 1 0 . 0 7 8 6
2 9 . 0 0 . 0 6 1 2 0 . 0 6 i 4
3 0 . 6 0 . 0 4 5 6 0 . 0 4 4 2
3 1 . 4 0 . 0 3 8 8 0 . 0 3 8 9
3 3 . 0 0 . 0 2 8 2 0 . 0 2 8 3
3 4 . 6 0 . 0 2 0 5 0 . 0 2 0 4
3 6 . 2 0 . 0 1 4 9 0 . 0 1 5 0
3 7 . 0 0 . 0 1 2 ? 0 . 0 1 2 3
3 3 . 6 0 . 0 0 9 2 0 . 0 0 9 3
k Q . 2 0 . 0 0 6 7 O.OO63
4l  . 0 0 . 0 0 5 7 0 . 0 0 5 7
k 2 . 6 o . o o ' n 0 . 0 0 4 1
4 3 . 4 0 . 0 0 3 5 0 . 0 0 3 5
4 5 . 0 0 . 0 0 1 8 0 . 0 0 2 0
4 6 . 6 0 . 00C 3 0 . 0 0 0 5
4 7 . 4 0 . 0 0 0 5 0 . 0 0 0 5
k y . o 0 . 0 0 0 2 0 . 0 0 0 2
4 9 . 8 0 . 0 0 0 1 0 . 0 0 0 1
51 • 4 0 . 0 0 0 0 0 . 0 0 0 1
53 - 0 0 . 0 0 0 0 0 . 0 0 0 0

Figure 35. Series reduction of two exponential distributions.
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U N , 2 , 3 UN, 4 , 6

UN;1,4

Figure 36. Network with three parallel activities.

4.2.2 Parallel Reduction

The fourth example is the reduction of the simple network in Figure 36, which involves 

the parallel reduction (maximum) of three uniform distributions. Suppose:

f / i 3, - / i  -  uniform [3,7]
/ 12 ~ uniform [2,3] and \ f i3l -  / 2 ~ uniform [4,6]

|/*s, “ h  ~uniform [1,4]

Then the cdfs of the three parallel activities are:

0 ; t<3

* i (  0
t - 3

; 3 s t s 7

F2(0

1 ; t > 7 

0 ; l < 4  

I - A
; 4 s t  s 6

I 1 ; t > 6
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FM)

f  0  ; /  <  1 

/ - I  ,  ; 1 s  t s  4
3

1 ; / > 4

and of their maximum is:

Fmx( fi , f i , f i  ) "  F { * F 2 * F 3 

The lower bound of the domain of the maximum is:

[max(/,, f 2,/ 3)]Iower bound-  max(/„ f 2, / 3 - lower bounds) -  4 

and the class boundary points of the theoretical solution are the {b/t' s} U {bf2 s} U {bf3 s}: 

4 ,6 , and 7; so, the maximum must be evaluated over the intervals: [4,6] and [6,7].

[0.125/2 -  0.875/+1.5; 4 s  / s  6
^123(0 “  )(0 "  •{

[ 0 .25 /-0 .75  ; 6 s  / s 7

[Q 25/-Q 875 ; 4 s  t*  6
f l l s i O  -  / m H ( / 1, / l , / j ) ( 0  “  -j

[ Q25 ; 6 s / s  7

Figure 37 depicts the pdf of the maximum and its polygonal approximation, which is 

defined on 10 classes over [4,7] (class width = 0.3). In this figure, the solid line is the 

theoretical solution, and the histogram is the polygonal approximation. (The histogram is 

an output from a PART algorithm.) The polygonal approximation is identical to the 

theoretical solution except in a small neighborhood of the jump discontinuity at t - 6 ,  

which is contained in the [5.8,6.1] class of the approximation. As the histogram 

illustrates, the polygonal approximation is representing the jump discontinuity as a steeply 

negatively sloped line segment over the [5.8,6.1] class. Had the jump discontinuity fallen 

on a class boundary point of the polygonal approximation, there would be complete 

agreement between the theoretical solution and the approximation of the maximum.
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Figure 37. Parallel reduction of three uniform distributions 
(intermediate network solution).

The throughput distribution of the network is obtained from the series reduction 

(convolution) of f n and / I23:

0.125/2 -  1375/ + 0.375 ; 6 =s / s  7

./throughput** f \ 2  f  123  ™ |

Q 25/-1 .5  ; 7 = s t s 8
-Q125t2 + 1.875/ - 6 l5 ; 8 s / s 9

-0 .2 5 /+  2.5 ; 9 s / s l 0

Figure 38 depicts the pdf of the throughput distribution and its polygonal approximation, 

which is defined on 10 classes over [6,10] (class width = 0.4). Table 18 presents 

comparisons of the first and second moments of the parallel reduction (intermediate 

network solution) and the throughput distribution obtained by the same means as the data in 

Table 15. The polygonal approximation is a close fit to the theoretical pdf. The greatest 

disagreement is again near the peak, but even there the errors are small. The MADV is

0.0079 near the peak.
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.1

0.

97

T

6 . 0
6. 2
6 . 4
6 . 5
6 . 7
6. 8
7 . 0
7 . 2  
7 - 3
7 . 5  
7 - 6
7 . 8
8 . 0  
8 . 1
8 . 3
8 . 4
8 . 6
8 . 8  
8 . 9  
9 - 1  
9 - 2
9 . 4  
9 - 6  
9 . 7  
9 - 9

THROUGHPUT TIME

ACTUAL APPROX

0 . 0 0 0 0 0 . 0 0 0 0
0 . 0 3 0 0 0 . 0 3 4 2
0 . 0 7 0 0 0 . 0 6 8 4
0 . 0 9 3 8 0 . 0 9 5 1
0 .1 4 8 8 0 . 1 4 9 3
0 . 1 8 0 0 0 . 1 8 3 7
0 . 2 5 0 0 0 . 2 4 5 3
0 . 3 0 0 0 0 . 3 0 7 9
0 . 3 2 5 0 O. 3 2 6 5
0 .3 7 5 0 O. 3 7 6 7
0 . 4 0 0 0 0 . 4 0 3 2
0 . 4 5 0 0 0 . 4 5 1 1
0 . 5 0 0 0 0 . 4 9 9 0
0 . 4 8 6 3 0 . 4 7 9 3
0 . 4 5 1 3 0 . 4 4 8 9
0 . 4 3 0 0 0 . 4 2 9 2
O. 38OO 0 . 3 7 4 2
0 . 3 2 0 0 O. 3 2 0 5
0 . 2 8 6 3 0 . 2 8 6 4
0 . 2 2 5 0 0 . 2 2 7 8
0 . 2 0 0 0 0 . 2 0 0 7
0 . 1 5 0 0 0 . 1 5 0 6
0 . 1 0 0 0 0 . 1 0 0 5
0 . 0 7 5 0 0 . 0 7 5 3
0 . 0 2 5 0 0 . 0 2 5 1

Figure 38. Reduction of a network with three parallel activities 
(throughput distribution).
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Table 18. Moments of the Reduction of a Network with Three Parallel Activities.

Source Mean Standard Deviation
Intermediate network solution:

Theoretical 5.500 0.755
Simulation 5.541 0.722

PART 5.524 0.732
Throughput distribution:

Theoretical 8.020 0.800
Simulation 8.039 0.779

PART 8.039 0.791

Similar results were achieved when series-parallel reduction operations were applied to 

other combinations of polygonal approximations of continuous distributions, including the 

uniform, triangular, normal, exponential, gamma, and beta distributions. The polygonal 

approximation results were close to the theoretical solutions, where they could be obtained, 

and the simulation results, as measured by the MADVs between the approximations and the 

theoretical/simulation pdfs and the differences between their first and second moments. 

The MADVs occurred at or near the peaks/maximum values of the pdfs, where, again, it 

should be expected that the greatest difficulty would be encountered in approximating 

curvilinear functions with straight line segments. Spiking occurred at and in the vicinity of 

distribution peaks, but “extreme” spiking was limited to situations involving the 

combinations of exponential distributions. When graphs of theoretical solutions and 

histograms of polygonal approximation and simulation results were compared, the general 

shapes of the distributions were seen to be the same, and the approximated and actual/ 

simulated values of the pdfs were nearly identical almost everywhere.

The collective results of these tests validated polygonal approximation of continuous 

activity resource consumption distributions and series-parallel reduction operations based 

on polygonal approximation, when employed in the reduction of simple networks. The 

next phase of the validation process involved demonstrating the performance of polygonal 

approximation and reduction algorithms for general project management networks.
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4.3 PART Algorithm Performance Based on Throughput Distributions

In this section, validation of the PART algorithms using “independent multiple arcs” 

approximation based on the first-available-arc-with-Property 1 method and sequential 

approximation to obtain throughput distributions (Section 3.3 [above]) is discussed. The 

validation was accomplished in three steps:

1. Performance of the algorithms against selected test 
networks.

2. Comparison of the performance of the algorithms against 
the reported performance of competing approximation 
procedures.

3. Performance of the algorithms against a set of “strongly 
randomized” test networks constructed in accordance 
with the experimental design for algorithm testing 
discussed in Section 3.5.1 [above].

For all of the test networks against which the algorithms were exercised, the results of 

extensive Monte Carlo simulations of these networks (Section 3.5.2 [above]) were taken as 

the “true” throughput distributions, since the actual solutions cannot be obtained. Example 

data inputs and outputs for the programs in Appendices A, B, D, and E are included here.

4.3.1 Performance Against Selected Test Networks

Although a small number of test networks (cases) are reported in the literature, they are 

not necessarily either realistic in terms of project management applications or representative 

of the challenges which a network approximation and reduction procedure may face, and 

consequently “strongly randomized” test networks should be employed in algorithm 

validation (Dodin, 1980 and 1985a; Hagstrom, 1990). (Table 6 contains references to 19 

of these networks.) Nonetheless, if properly selected, previously reported test networks 

can illustrate important characteristics of algorithm performance. Three previously reported 

test networks were chosen on functional considerations for PART algorithm validation.
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UN/1,2. UN,4 ,5

UN,2 . 3 ^  UN,3,5

Figure 39. Martin’s sample problem.
[Adapted from Martin (1965)]

Martin (1965) used the simple network in Figure 39 with nine nodes and eight arcs and 

all-uniformly distributed times to demonstrate the concept of a series-parallel algorithm for 

the exact analytic solution of acyclic, directed networks (Section 3.1 [above]). Because of 

the problem of “exploding coefficient storage,” Martin’s solution was a piecewise-defined 

polynomial throughput time density with terms of as-high-as the fifth degree. Martin’s 

solution is shown in Part (a) of Figure 40; a normal distribution with the same first and 

second moments as Martin’s solution is shown in Part (b) of Figure 40, superimposed over 

the graph of his solution. Figure 41 depicts the pdf of Martin’s solution and its polygonal 

approximation obtained from the PART algorithm using “independent multiple arcs” 

approximation. Table 19 presents a comparison of the first and second moments of 

Martin’s network as calculated from Martin’s solution, as obtained from a Monte Carlo 

simulation (10,000 replications), and as calculated from grouped data statistics from the 

polygonal approximations of the throughput distributions developed by the PART 

algorithms using “independent multiple arcs” approximation (labeled PART-ind) and 

sequential approximation (labeled PART-seq), and the MADVs between the simulation and 

PART algorithm approximations of the throughput distribution.
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?(z) = 0 x£15,

=  -  395.50789 4-131.835942 -  17.578125x:-i- 1.17187m’ 

-0.039062499x*4-0.00052083334z’ 1 5 g x g  16,

=  1242.8923 -  '380.16405z4-46.421373x5 -  2.8281249z3 

4-0.085937497x*-0.0010416667z’ 1 6 g x g  17,

=  503.38341-162.66145x4-20.833333x:-1 .3229167x’ 

-)-0.041666667x‘-0.00052083334xs 1 7 £ x g l8 ,

=  -4417 .3669  4 -1 2 0 4 .2 1 3 5 2 -131.041G6z34-7.11458323

—0.192708322*4-0.0020833334z’ 1 8 g x g l9 ,

=  3320.4433 -  832.05207x4-83.30208x: -  4.1666665x’ 

4-0.104166662*-0.0010416667xi 1 9 g x g 2 0 ,

=  -12 .891052  4-1.2812S05x -  0.031254768x: 20 g  x g  21,

=  -  4267.1633 4- 1014.2031x -  96.499995xi4-4.5937498x3 

-0.10937499x*4-0.0010416667x’ 2 1 g x g 2 2 ,

=  11837.938-2646.0468x4-236.24999x:-1 0 .53125z’ 

4-0.234374992* -  0.00208333342’ 22 5  x £  23,

=  —4923.37174- 997.7161x—80.598956x:4-3.2447915x’

-  0.065104164z* 4-0.000520833342s 23 g  x  ̂  24,

= -9 0 7 0 .5 7 2 4 4 -1861.7161r-152.59895x34-6.2447913x’

—0.12760416x* 4-0.0010416667z5 2 4 g z g 2 5 ,

=  6188.2161 — 1190.0416x 4-91.541663x!—3.520833223 

4-0.067708332* -  0.000520S3334xs 25 g x  g  26,

=  0, x  26.

(a)
0.3

r \

o.a.

0.1

o
X10

(b)
Figure 40. Martin’s solution of Martin’s sample problem. 

[Adapted from Martin (1965)]
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THROUGHPUT TIME
T  ACTUAL APPROX

1 5 . 0  0 . 0 0 0 0  0 . 0 0 0 0
1 5 - 5  o .o o o o  0 . 0 0 0 6
1 5 . 9  0 . 0 0 0 3  0 . 0 0 1 2
1 6 . 1  0 . 0 0 0 8  0 . 0 0 0 0
1 6 . 6  0 . 0 0 5 3  0 . 0 0 9 1
1 7 . 0  0 . 0 1 5 0  0 . 0 1 6 4
1 7 . 2  0 . 0 2 3 0  0 . 0 2 0 9
1 7 . 7  0 . 0 5 2 7  0 . 0 5 7 5
1 8 . 1  0 . 0 8 6 1  0 . 0 8 6 8
1 8 . 3  0 . 1 0 5 2  0 . 1 0 5 2
1 8 . 8  0 . 1 5 4 5  0 . 1 5 0 6
1 9 . 2  0 . 1 8 8 5  0 . 1 8 6 9
1 9 - 4  0 .2 0 3 1  0 . 2 1 0 6
1 9 . 9  0 . 2 2 9 5  0 . 2 2 5 8
2 0 . 3  0 ; 2 3 9 2  0 . 2 3 8 0
2 0 . 5  0 . 2 4 0 4  0 . 2 4 2 4
2 1 . 0  0 . 2 3 2 5  0 . 2 2 7 0
2 1 . 4  0 . 21 8 1  0 . 2 1 4 8
2 1 . 6  0 .2 0 5 8  0 . 2 0 4 2
2 2 . 1  0 . 1 5 9 4  0 . 1 6 0 6
2 2 - 5  0 . 1 2 9 2  0 . 1 2 5 8
2 2 . 7  0 . 0 9 9 2  0 . 1 0 2 7
2 3 . 2  0 . 0 5 9 6  0 . 0 6 4 9
2 3 - 6  0 . 0 3 2 4  0 . 0 3 4 6
2 3 - 8  0 . 0 2 2 2  0 . 0 2 4 4
2 4 . 3  0 . 0 0 8 2  0 . 0 1 3 3
2 4 . 7  0 .0 0 1 0  0 . 0 0 4 4
2 4 . 9  0 . 0 0 0 1  0 . 0 0 2 2
2 5 - 4  0 . 0 0 0 1  0 . 0 0 1 2
2 5 . 8  0 . 0 0 0 0  ' 0 . 0 0 0 4

Figure 41. PART solution of Martin’s sample problem.
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Table 19. Comparisons of Solutions of Martin’s Sample Problem.

Source Mean Standard Deviation MADV
Martin’s 20.524 1.380 n/a

Simulation 20.489 1.487 n/a
PART-ind 20.515 1.539 0.0167
PART-seq 20.518 1.537 0.0171

The polygonal approximations from both the PART-ind and PART-seq algorithms 

were very close to both Martin’s solution and the simulation results. The maximum relative 

error in the estimation of the mean of the throughput distribution was 0.13%; in the 

estimation of the standard deviation, 3.50%. The MADVs, as the computed values of the 

K-S goodness-of-fit test statistic T, have prob values >20%.

The “conditional” network in Part (a) Figure 42 was adapted from Martin (1965) to 

illustrate the effect of dependencies among paths (Section 2.4.3 [above]). This network 

has two starting nodes for cross-connections between two paths, node 3 and node 4, and 

two terminal nodes for cross-connections also between two paths, nodes 5 and 6. 

Activities (1,3) and (1,4) are arcs with Property 1 (a activities), and activities (5,7) and 

(6,7) are arcs with Property 2 (b activities). Part (b) of Figure 42 depicts the completely 

reducible form of the original network which was created by the PART-ind algorithm using 

the first-available-arc-with-Property 1 method: first, node 3 was duplicated once, creating 

the new node 3 ',  and activity (13) was “independently multiplied” (duplicated) once, 

creating activity (1,3'); then, node 4 was duplicated once, creating the new node 4 ', and 

activity (1,4) was “independently multiplied” (duplicated) once, creating activity (1,4'). 

The activity duration distributions were specified so that there were pairs of distributions 

with “high” variances in series, such as the equivalent activity of subnetwork (1 ,3 ')-*  

(3',6), (1,4)-* (4,6) and activity (6,7), and parallel subnetworks with near-maximally 

overlapping distributions, such as (1,3') -* (3', 6), (1,4) -* (4,6) (Section 3.5.1 [above]).
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(a) Original network.

(b) Completely reducible form.

Fi gure 42. “Conditional ” network.
[Adapted from Martin (1965)]
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Figure 43 shows the input data files for both the PART-ind and PART-seq programs 

for the “conditional” network: Part (a) shows the control data file (CONTROL.DAT), 

Part (b) shows the network data file (DATAN.DAT), and Part (c) shows the activity 

duration distributions data file (DATAH.DAT). The formats of these files are described in 

comment statements at the top of the code listings of the PART-ind and PART-seq 

programs in Appendices A and B, respectively. Figure 44 depicts the output from the 

PART-ind program under output option 7 (combination of output options 1 - 6), which 

includes: for the polygonal approximation of the network throughput distribution - its cdf, 

pdf, mean and standard deviation, the probabilities that the project throughput duration will 

fall in an interval ±1, 2, or 3 standard deviations from the mean, the number of nodes in 

the completely reducible network, and the number of cross-connections removed by the 

“independent multiple arcs” method; for the simulation approximation - its cdf, pdf, mean 

and standard deviation, and the probabilities that the project throughput duration will fall in 

an interval ±1, 2, or 3 standard deviations from the mean; and for the K-S goodness-of-fit 

test - the computed value of the K-S test statistic (labeled D-MAX), selected K-S test 

critical values, and the conclusion of the goodness-of-fit hypothesis test at the 5% level of 

statistical significance. Figure 45 depicts the output from the PART-seq program also 

under option 7, which is similar to the PART-ind output, except that there is no report of 

the number of nodes in the completely reducible network or the number of cross- 

connections removed, since sequential approximation reduces a network without the 

“independent multiplication” (duplication) of arcs. Additionally, the PART-seq program 

permits any node to be designated on an Output Critical List (OCL) for output report of the 

throughput distribution through that node. Node 5 was designated on the OCL for the 

PART-seq reduction of the “conditional” network, so there is a report for both the 

polygonal approximation and the simulation approximation of the throughput distribution 

through node 5 in the output in Figure 45.
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007 0010 7 10000
(a) Control data file.

1 2 3 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
2 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
3 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
4 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2
5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 1
6 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
o o o o o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o o o o o
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0

(b) Network data file.

0 1  01  2  1 6 .0 0 0 0 0  0 .0 0 0 0 0 0  1 0 .0 0 0 0 0  2 2 .0 0 0 0 0
0 1  02 6 0.2 5 0 0 0 0  0 .0 0 0 0 0 0  5 .0 0 0 0 0 0  9 .0 0 0 0 0 0
0 1  03  2 9.0 0 0 0 0 0  0 .0 0 0 0 0 0  1 .0 0 0 0 0 0  1 7 .0 0 0 0 0
0 2  01  6 0.5 0 0 0 0 0  0 .0 0 0 0 0 0  8 .0 0 0 0 0 0  1 0 .0 0 0 0 0
0 3  01  2 1 1 .0 0 0 0 0  0 .0 0 0 0 0 0  8 .0 0 0 0 0 0  1 4 .0 0 0 0 0
0 3  02 2 15 . 0 0 0 0 0  0 .0 0 0 0 0 0  1 0 .0 0 0 0 0  2 0 .0 0 0 0 0
04  01  6 0.5 0 0 0 0 0  0 .0 0 0 0 0 0  1 5 .0 0 0 0 0  1 7 .0 0 0 0 0
04  02 2 8.0 0 0 0 0 0  0 .0 0 0 0 0 0  4 .0 0 0 0 0 0  1 2 .0 0 0 0 0
05  01  2 1 0 .0 0 0 0 0  0 .0 0 0 0 0 0  7 .0 0 0 0 0 0  1 3 .0 0 0 0 0
0 6  01  6 0.2 5 0 0 0 0  0 .0 0 0 0 0 0  5 .0 0 0 0 0 0  9 .0 0 0 0 0 0

(c) Activity duration distributions data file.

Figure 43. PART-ind and PART-seq program input.
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THE POLYGONAL 
IS:

INTERVAL 1 

INTERVAL 2 

INTERVAL 3 

INTERVAL 4 

INTERVAL 5 

INTERVAL 6 

INTERVAL 7 

INTERVAL 8 

INTERVAL 9 

INTERVAL 10

APPROXIMATION OF THE TIME DISTRIBUTION THROUGH THE PROJECT

LOWER LIMIT = 25.00 UPPER LIMIT = 27.00

X = ( -.00005277) + ( .00000211) T

LOWER LIMIT = 27.00 UPPER LIMIT = 29.00

X = ( -.00908850) + ( .00033661) T

LOWER LIMIT = 29.00 UPPER LIMIT = 31.00

X = ( -.20893960) + ( .00720481) T

LOWER LIMIT = 31.00 UPPER LIMIT = 33.00

X = ( -1.22777647) + ( .03999845) T

LOWER LIMIT = 33.00 UPPER LIMIT = 35.00

X = ( -1.52304873) + ( .04921934) T

LOWER LIMIT = 35.00 UPPER LIMIT -  37.00

X = ( 1.04511179) + ( -.02417275) T

LOWER LIMIT = 37.00 UPPER LIMIT * 39.00

X = ( 2.10435497) + ( -.05298885) T

LOWER LIMIT = 39.00 UPPER LIMIT = 41.00

X = ( .82898677) + ( -.02018400) T

LOWER LIMIT = 41.00 UPPER LIMIT = 43.00

X = ( .09095823) + ( -.00209500) T

LOWER LIMIT = 43.00 UPPER LIMIT = 45.00

X = ( .00610929) + ( -.00013576) T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

177

CUMULATIVE DISTRIBUTION FUNCTION
T F(T)

25.000 .00000000
25.400 .00000017
25.800 .00000067
26.200 .00000152
26.600 .00000270
27.000 .00000380
27.400 .00003112
27.800 .00011182
28.200 .00024632
28.600 .00043462
29.000 .00060948
29.400 .00125251
29.800 .00297983
30.200 .00585872
30.600 .00988915
31.000 .01484796
31.400 .02313267
31.800 .03758719
32.200 .05843471
32.600 .08567522
33.000 .12020949
33.400 .16367516
33.800 .21590836
34.200 .27600834
34.600 .34397510
35.000 .41975245
35.400 .49741904
35.800 .57116589
36.200 .64104918
36.600 .70706891
37.000 .76853057
37.400 .82243676
37.800 .86717915
38.200 .90345229
38.600 .93125616
39.000 .95099245
39.400 .96568446
39.800 .97755212
40.200 .98619376
40.600 .99160936
41.000 .99416057
41.400 .99565460
41.800 .99717541
42.200 .99836137
42.600 .99921249
43.000 .99966867
43.400 .99982641
43.800 .99990235
44.200 .99995660
44.600 .99998915
45.000 1.00000000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

P R O B A B I L I T Y  D E N S I T Y  F U N C T I O N

0
I

25.000
25.400
25.800 
26.200 
26.600
27.000
27.400
27.800 
28.200 
28.600
29.000
29.400
29.800
30.200
30.600
31.000
31.400
31.800
32.200
32.600
33.000
33.400
33.800
34.200
34.600
35.000
35.400
35.800
36.200
36.600
37.000
37.400
37.800
38.200
38.600
39.000
39.400
39.800
40.200
40.600
41.000
41.400
41.800
42.200
42.600
43.000
43.400
43.800
44.200
44.600
45.000

.05 .10 .15 .20 .25
.+----- 1------+------1------+------ 1---- ..+------x------+------ 1

* *

* * * * * *

* * * *

* *
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EXPECTED VALUE OF T ” 35.46154927
STANDARD DEVIATION OF T - 2.11260360

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
33.349 TIME UNITS AND 37.574 TIME UNITS IS ABOUT 68.24 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
31.236 TIME UNITS AND 39.687 TIME UNITS IS ABOUT 95.44 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
29.124 TIME UNITS AND 41.799 TIME UNITS IS ABOUT 99.73 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
27.011 TIME UNITS AND 43.912 TIME UNITS IS ABOUT 99.99 %.

THE NUMBER OF NODES IN THE FINAL NETWORK WAS 9. 

THE NUMBER OF CROSS-CONNECTIONS REDUCED WAS 2.
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THE SIMULATED TIME DISTRIBUTION THROUGH THE PROJECT IS: 

CUMULATIVE DISTRIBUTION FUNCTION

T F(T)
25.000 .00000000
25.400 .00000000
25.800 .00000000
26.200 .00000000
26.600 .00000000
27.000 .00000000
27.400 .00010000
27.800 .00010000
28.200 .00010000
28.600 .00020000
29.000 .00040000
29.400 .00100000
29.800 .00260000
30.200 .00450000
30.600 .00770000
31.000 .01330000
31.400 .02230000
31.800 .03670000
32.200 .05550000
32.600 .08360000
33.000 .11830000
33.400 .16190000
33.800 .21770000
34.200 .28090000
34.600 .35150000
35.000 .42580000
35.400 .49760000
35.800 .57680000
36.200 .64780000
36.600 .71560000
37.000 .77500000
37.400 .83020000
37.800 .86980000
38.200 .90640000
38.600 .93280000
39.000 .95400000
39.400 .97070000
39.800 .98050000
40.200 .98870000
40.600 .99340000
41.000 .99640000
41.400 .99840000
41.800 .99930000
42.200 .99980000
42.600 .99990000
43.000 1.00000000
43.400 1.00000000
43.800 1.00000000
44.200 1.00000000
44.600 1.00000000
45.000 1.00000000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

SIMULATION FREQUENCY HISTOGRAM

0 .02 .04 .06 .08 .10
 1-----+------ 1-----+ x------ +------1-----+-------1------+------ 1

25.200 *
25.600 *
26.000 *
26.400 *
26.800 *
27.200 *
27.600 *
28.000 *
28.400 *
28.800 *
29.200 *
29.600 **
30.000 **
30.400 ***
30.800 * * *
31.200 *****
31.600 ***** *
32.000 ***** ***
32.400 ***** * * * ****
32.800 ***** *** *******
33.200 ***** *** ************
33.600 ***** *** ************* ****
34.000 ***** *** ************* ********
34.400 ***** * * * ************* ***********
34.800 ***** *** ************* ***********
35.200 ***** * * * ************* ***********
35.600 ***** *** ************* ***********
36.000 ***** *** ************* ***********
36.400 ***** *** ************* **********
36.800 ***** *** ************* ******
37.200 ***** *** ************* ****
37.600 ***** * * * **********
38.000 ***** *** ********
38.400 ***** *** ***
38.800 ***** *** *
39.200 ***** * *
39.600 *****
40.000 ****
40.400
40.800
41.200
41.600
42.000
42.400
42.800
43.200
43.600
44.000
44.400
44.800
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EXPECTED VALUE OF T = 35.43308000
STANDARD DEVIATION OF T = 2.06821897

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
33.365 TIME UNITS AND 37.501 TIME UNITS IS ABOUT 68.24 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
31.297 TIME UNITS AND 39.570 TIME UNITS IS ABOUT 95.44 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
29.228 TIME UNITS AND 41.638 TIME UNITS IS ABOUT 99.73 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
27.160 TIME UNITS AND 43.706 TIME UNITS IS ABOUT 99.99 %.

KOLMOGOROV—SMIRNOV ONE-SAMPLE TEST COMPARISON OF POLYGONAL APPROXIMATION 
OF NETWORK THROUGHPUT DISTRIBUTION AND SIMULATED NETWORK THROUGHPUT 
DISTRIBUTION:

K-S TEST STATISTIC D-MAX = .0085

K-S CRITICAL VALUES:
20 PERCENT = .1517
10 PERCENT = .1731
5 PERCENT = .1921
2 PERCENT = .2146
1 PERCENT = .2302

FAIL TO REJECT THE NULL HYPOTHESIS THAT THE DISTRIBUTIONS ARE THE SAME 
AT THE 5% LEVEL OF STATISTICAL SIGNIFICANCE.

Figure 44. PART-ind program output.
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THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION THROUGH NODE

INTERVAL 1

INTERVAL 2

INTERVAL 3

INTERVAL 4

INTERVAL 5

INTERVAL 6

INTERVAL 7

INTERVAL 8

INTERVAL 9

INTERVAL 10

LOWER LIMIT = 18.00 UPPER LIMIT = 19.40

X = ( -.05021934) + ( .00278996) T

LOWER LIMIT = 19.40 UPPER LIMIT = 20.80

X = ( -.26933624) + ( .01404307) T

LOWER LIMIT = 20.80 UPPER LIMIT =

X = ( -.73713341) + ( .03654872) T

LOWER LIMIT = 26.40 UPPER LIMIT *

X = ( 1.64205667) + ( -.05631819) T

2 2 . 2 0

LOWER LIMIT = 22.20 UPPER LIMIT = 23.60

X = ( -1.14517485) + ( .05504311) T

LOWER LIMIT = 23.60 UPPER LIMIT = 25.00

X = ( -.57698953) + ( .03106648) T

LOWER LIMIT = 25.00 UPPER LIMIT = 26.40

X = ( .87408961) + ( -.02707143) T

27.80

LOWER LIMIT = 27.80 UPPER LIMIT = 29.20

X = ( 1.16601964) + ( -.03921378) T

LOWER LIMIT = 29.20 UPPER LIMIT = 30.60

X = ( .44160704) + ( -.01434302) T

LOWER LIMIT = 30.60 UPPER LIMIT = 32.00

X = ( .08799734) + ( -.00273934) T

183

5 IS:
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CUMULATIVE DISTRIBUTION FUNCTION
T F(T)

18.000 .00000000
18.280 .00010935
18.560 .00043739
18.840 .00098413
19.120 .00174957
19.400 .00267724
19.680 .00415175
19.960 .00667058
20.240 .01029021
20.520 .01501062
20.800 .02085426
21.080 .02872561
21.360 .03948433
21.640 .05310798
21.920 .06959657
22.200 .08912744
22.480 .11260280
22.760 .14057016
23.040 .17285218
23.320 .20944884
23.600 .25052371
23.880 .29530060
24.160 .34267625
24.440 .39248709
24.720 .44473314
25.000 .49924863
25.280 .55358916
25.560 .60564189
25.840 .65557257
26.120 .70338121
26.400 .74877754
26.680 .79032501
26.960 .82716760
27.240 .85959559
27.520 .88760898
27.800 .91117036
28.080 .93091271
28.360 .94754381
28.640 .96110107
28.920 .97158448
29.200 .97912099
29.480 .98481229
29.760 .98950622
30.040 .99307585
30.320 .99552117
30.600 .99694457
30.880 .99790321
31.160 .99874950
31.440 .99938106
31.720 .99979789
32.000 1.00000000
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PROBABILITY DENSITY FUNCTION

0
I-

.05
-I—

.10
—I —

.15
- I _ -

.20
-I—

.25
— I

18.000
18.280
18.560
18.840
19.120
19.400
19.680
19.960
20.240
20.520 
20.800 
21.080
21.360
21.640
21.920 
2 2 . 2 0 0
22.480
22.760
23.040
23.320
23.600
23.880
24.160
24.440
24.720
25.000 
25.280
25.560
25.840
26.120
26.400
26.680
26.960
27.240
27.520 
27.800 
28.080
28.360
28.640
28.920 
29.200
29.480
29.760
30.040
30.320
30.600
30.880
31.160
31.440
31.720
32.000

*  *

*  *  *  * *

★ * * * * * * *

* * * * * * * * * * *

* * * * * * * * * * * *

* * ★ * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * * * *

* * * * * * * * * * * * * * *

* * * * * * * * * * * *

* * * * * * * * * * *

* * * * * * * *

* * * * *

*  *
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EXPECTED VALUE OF T = 25.00218256
STANDARD DEVIATION OF T = 2.06795371

THE PROBABILITY OF NODE 
22.934 TIME UNITS AND

THE PROBABILITY OF NODE 
20.866 TIME UNITS AND

THE PROBABILITY OF NODE 
18.798 TIME UNITS AND

THE PROBABILITY OF NODE 
16.730 TIME UNITS AND

5 THROUGHPUT TIME FALLING BETWEEN 
27.070 TIME UNITS IS ABOUT 68.24 %.

5 THROUGHPUT TIME FALLING BETWEEN 
29.138 TIME UNITS IS ABOUT 95.44 %.

5 THROUGHPUT TIME FALLING BETWEEN 
31.206 TIME UNITS IS ABOUT 99.73 %.

5 THROUGHPUT TIME FALLING BETWEEN 
33.274 TIME UNITS IS ABOUT 99.99 %.
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T H E  P O L Y G O N A L  
I S :

INTERVAL 1 

INTERVAL 2 

INTERVAL 3 

INTERVAL 4 

INTERVAL 5 

INTERVAL 6 

INTERVAL 7 

INTERVAL 8 

INTERVAL 9 

INTERVAL 10

APPROXIMATION OF THE TIME DISTRIBUTION THROUGH THE PROJECT

LOWER LIMIT = 25.00 UPPER LIMIT = 27.00

X = ( -.00005277) + ( .00000211) T

LOWER LIMIT = 27.00 UPPER LIMIT = 29.00

X = ( -.00908850) + ( .00033661) T

LOWER LIMIT = 29.00 UPPER LIMIT = 31.00

X = ( -.20893960) + ( .00720481) T

LOWER LIMIT = 31.00 UPPER LIMIT = 33.00

X = ( -1.22777647) + ( .03999845) T

LOWER LIMIT = 33.00 UPPER LIMIT = 35.00

X = ( -1.52304873) + ( .04921934) T

LOWER LIMIT = 35.00 UPPER LIMIT = 37.00

X = ( 1.04511179) + ( -.02417275) T

LOWER LIMIT = 37.00 UPPER LIMIT = 39.00

X = ( 2.10435497) + ( -.05298885) T

LOWER LIMIT = 39.00 UPPER LIMIT = 41.00

X = ( .82898677) + ( -.02018400) T

LOWER LIMIT = 41.00 UPPER LIMIT = 43.00

X = ( .09095823) + ( -.00209500) T

LOWER LIMIT = 43.00 UPPER LIMIT = 45.00

X = ( .00610929) + ( -.00013576) T
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CUMULATIVE DISTRIBUTION FUNCTION
T F(T)

25.000 .00000000
25.400 .00000017
25.800 .00000067
26.200 .00000152
26.600 .00000270
27.000 .00000380
27.400 .00003112
27.800 .00011182
28.200 .00024632
28.600 .00043462
29.000 .00060948
29.400 .00125251
29.800 .00297983
30.200 .00585872
30.600 .00988915
31.000 .01484796
31.400 .02313267
31.800 .03758719
32.200 .05843471
32.600 .08567522
33.000 .12020949
33.400 .16367516
33.800 .21590836
34.200 .27600834
34.600 .34397510
35.000 .41975245
35.400 .49741904
35.800 .57116589
36.200 .64104918
36.600 .70706891
37.000 .76853057
37.400 .82243676
37.800 .86717915
38.200 .90345229
38.600 .93125616
39.000 .95099245
39.400 .96568446
39.800 .97755212
40.200 .98619376
40.600 .99160936
41.000 .99416057
41.400 .99565460
41.800 .99717541
42.200 .99836137
42.600 .99921249
43.000 .99966867
43.400 .99982641
43.800 .99990235
44.200 .99995660
44.600 .99998915
45.000 1.00000000
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PROBABILITY DENSITY FUNCTION

0
I

25.000
25.400
25.800 
26.200 
26.600
27.000
27.400
27.800 
28.200 
28.600
29.000
29.400
29.800
30.200
30.600
31.000
31.400
31.800
32.200
32.600
33.000
33.400
33.800
34.200
34.600
35.000
35.400
35.800
36.200
36.600
37.000
37.400
37.800
38.200
38.600
39.000
39.400
39.800
40.200
40.600
41.000
41.400
41.800
42.200
42.600
43.000
43.400
43.800
44.200
44.600
45.000

.05 .10 .15 .20
.+ 1------- + 1--- + 1----- + 1-------+.

* *
* * * * * *

* * * *

*  *

.25
-I
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EXPECTED VALUE OF T = 35.46154927
STANDARD DEVIATION OF T * 2.11260360

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
33.349 TIME UNITS AND 37.574 TIME UNITS IS ABOUT 68.24 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
31.236 TIME UNITS AND 39.687 TIME UNITS IS ABOUT 95.44 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
29.124 TIME UNITS AND 41.799 TIME UNITS IS ABOUT 99.73 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
27.011 TIME UNITS AND 43.912 TIME UNITS IS ABOUT 99.99 %.
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THE SIMULATED TIME DISTRIBUTION THROUGH NODE 5 IS:
CUMULATIVE DISTRIBUTION FUNCTION

T F(T)
18.000 .00000000
18.280 .00010000
18.560 .00030000
18.840 .00040000
19.120 .00060000
19.400 .00150000
19.680 .00320000
19.960 .00600000
20.240 .00920000
20.520 .01430000
20.800 .02080000
21.080 .03020000
21.360 .03920000
21.640 .05320000
21.920 .07220000
22.200 .09140000
22.480 .11570000
22.760 .14320000
23.040 .17210000
23.320 .20910000
23.600 .24800000
23.880 .29560000
24.160 .34340000
24.440 .39390000
24.720 .44980000
25.000 .50300000
25.280 .55830000
25.560 .60850000
25.840 .66300000
26.120 .70720000
26.400 .74970000
26.680 .79310000
26.960 .82930000
27.240 .86280000
27.520 .88860000
27.800 .91220000
28.080 .93290000
28.360 .94870000
28.640 .96170000
28.920 .97200000
29.200 .97990000
29.480 .98600000
29.760 .99110000
30.040 .99470000
30.320 .99610000
30.600 .99760000
30.880 .99890000
31.160 .99950000
31.440 .99970000
31.720 .99990000
32.000 1.00000000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

192

SIMULATION FREQUENCY HISTOGRAM

0 .02 .04 .06 .08
 1-------+-------- 1 ------ + --------- 1 ------- + --------1 ------ + ---------1--------+

18.140
18.420
18.700
18.980
19.260
19.540 
19.820 
2 0 . 1 0 0
20.380 ****
20.660 ****
20.940 ******
2 1 . 2 2 0  * * * * * *

21.500 ********
21.780 ***********
22.060 ***********
22.340 *************
2 2 . 6 2 0  * * * * * * * * * * * * * * *

22.900 ***************
23.180 ********************
23.460 ********************
23.740 *************************
24.020 *************************
24.300 **************************
24.580 *****************************
24.860 ****************************
25.140 *****************************
25.420 **************************
25.700 ****************************
25.980 ***********************
26.260 **********************
26.540 ***********************
2 6 . 8 2 0  * * * * * * * * * * * * * * * * * * *

27.100 ******************
27.380 **************
27.660 *************
27.940 ***********
2 8 . 2 2 0  * * * * * * * * *

28.500 ********
28.780 ******
29.060 *****
29.340 
29.620
29.900
30.180
30.460
30.740
31.020
31.300
31.580
31.860 *

.10
- I
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EXPECTED VALUE OF T = 24.98661600
STANDARD DEVIATION OF T * 2.05452688

THE PROBABILITY OF NODE 5 THROUGHPUT TIME FALLING BETWEEN 
22.932 TIME UNITS AND 27.041 TIME UNITS IS ABOUT 68.24 %.

THE PROBABILITY OF NODE 5 THROUGHPUT TIME FALLING BETWEEN 
20.878 TIME UNITS AND 29.096 TIME UNITS IS ABOUT 95.44 %.

THE PROBABILITY OF NODE 5 THROUGHPUT TIME FALLING BETWEEN 
18.823 TIME UNITS AND 31.150 TIME UNITS IS ABOUT 99.73 %.

THE PROBABILITY OF NODE 5 THROUGHPUT TIME FALLING BETWEEN 
16.769 TIME UNITS AND 33.205 TIME UNITS IS ABOUT 99.99 %.
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THE SIMULATED TIME DISTRIBUTION THROUGH THE PROJECT IS:
C U M U L A T IV E  D I S T R I B U T I O N  F U N C T IO N

T F(T)
25.000 .00000000
25.400 .00000000
25.800 .00000000
26.200 .00000000
26.600 .00000000
27.000 .00000000
27.400 .00010000
27.800 .00010000
28.200 .00010000
28.600 .00020000
29.000 .00040000
29.400 .00100000
29.800 .00260000
30.200 .00450000
30.600 .00770000
31.000 .01330000
31.400 .02230000
31.800 .03670000
32.200 .05550000
32.600 .08360000
33.000 .11830000
33.400 .16190000
33.800 .21770000
34.200 .28090000
34.600 .35150000
35.000 .42580000
35.400 .49760000
35.800 .57680000
36.200 .64780000
36.600 .71560000
37.000 .77500000
37.400 .83020000
37.800 .86980000
38.200 .90640000
38.600 .93280000
39.000 .95400000
39.400 .97070000
39.800 .98050000
40.200 .98870000
40.600 .99340000
41.000 .99640000
41.400 .99840000
41.800 .99930000
42.200 .99980000
42.600 .99990000
43.000 1.00000000
43.400 1.00000000
43.800 1.00000000
44.200 1.00000000
44.600 1.00000000
45.000 1.00000000
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SIMULATION FREQUENCY HISTOGRAM

0 .02 .04 .06 .08 .10
I - ----+------1__ --1--- --1------+------1------+------

25.200
25.600
26.000
26.400
26.800
27.200
27.600
28.000
28.400
28.800
29.200
29.600 *

30.000 *

30.400 **
30.800 * * *
31.200 * * * * *

31.600 * * * * * * *

32.000 * * * * * * * * *

32.400 * * * * * * * * * * ***
32.800 * * * * * * * * * * **** *
33.200 * * * * * * * * * * **** **** *
33.600 * * * * * * * * * * **** **** **** * *
34.000 * * * * * * * * * * **** ***★ ♦ *** ******
34.400 * * * * * * * * * * **** **** **** *********
34.800 * * * * * * * * * * **** **** * * * * ***********
35.200 * * * * * * * * * * **** **** **** **********
35.600 * * * * * * * * * * **** **** **** **************
36.000 * * * * * * * * * * **** **** **** **********
36.400 * * * * * * * * * * **** **** **** ********
36.800 * * * * * * * * * * **** **** **** ****
37.200 * * * * * * * * * * **** **** **** **
37.600 * * * * * * * * * * **** ****
38.000 * * * * * * * * * * **** **
38.400 * * * * * * * * * * **
38.800
39.200
39.600
40.000 * * * *

40.400 * *
40.800 *  *

41.200 *
41.600
42.000
42.400
42.800
43.200
43.600
44.000
44.400
44.800
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EXPECTED VALUE OF T = 35.43308000
STANDARD DEVIATION OF T = 2.06821897

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
33.365 TIME UNITS AND 37.501 TIME UNITS IS ABOUT 68.24 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
31.297 TIME UNITS AND 39.570 TIME UNITS IS ABOUT 95.44 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
29.228 TIME UNITS AND 41.638 TIME UNITS IS ABOUT 99.73 %.

THE PROBABILITY OF THE PROJECT THROUGHPUT TIME FALLING BETWEEN 
27.160 TIME UNITS AND 43.706 TIME UNITS IS ABOUT 99.99 %.

KOLMOGOROV—SMIRNOV ONE-SAMPLE TEST COMPARISON OF POLYGONAL APPROXIMATION 
OF NETWORK THROUGHPUT DISTRIBUTION AND SIMULATED NETWORK THROUGHPUT 
DISTRIBUTION:

K-S TEST STATISTIC D-MAX = .0085

K-S CRITICAL VALUES:
20 PERCENT = .1517
10 PERCENT = .1731
5 PERCENT = .1921
2 PERCENT = .2146
1 PERCENT = .2302

FAIL TO REJECT THE NULL HYPOTHESIS THAT THE DISTRIBUTIONS ARE THE SAME 
AT THE 5% LEVEL OF STATISTICAL SIGNIFICANCE.

Figure 45. PART-seq program output.
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Table 20. Comparisons of Reductions of a “Conditional” Network.

Source Mean Standard Deviation MADV
Simulation 35.433 2.068 n/a
PART-ind 35.462 2.113 0.0085
PART-seq 35.462 2.113 0.0085

Table 20 presents comparisons of the PART-ind and PART-seq algorithm reductions 

and the simulation approximation of the “conditional” network obtained by the same means 

as the data in Table 19. The PART-ind and PART-seq approximations were essentially 

identical and were very close to the simulation results. The relative error in the estimation 

of the mean of the throughput distribution was 0.08%; in the estimation of the standard 

deviation, 2.18%. The MADVs, as the computed values of the K-S goodness-of-fit test 

statistic T,  again have prob values >20%.

The doubly tied, double Wheatstone Bridge network in Figure 46 consists of a double 

Wheatstone Bridge (center “square” of nodes 2, 3, 4, 5, and 6), whose front edge is tied 

by two activities to a source node (node 1) and whose back edge is tied by two activities to 

a sink node (node 7) (Whitehouse, 1973; Elmaghraby, 1977). Although the network has

UN, 5,10

UN, 7,12
> 5

Figure 46. Doubly tied, double Wheatstone Bridge network.
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only seven nodes and 12 activities, there are 13 paths from source to sink. The activity 

duration distributions were suggested by Solberg (1978). The five uniform distributions 

have “high” variances and appear in series in one pair in the original network. The 

domains of the uniform distributions were chosen so that paths of about the same average 

length have near-maximally overlapping distributions; for example, the distribution of path 

(1 ,2)-*(2 ,5)-*(5 ,6)-*(6 ,7) has average length 52.5 over domain [32,73], and the 

distribution of path (1,2) -*(2,4) -* (4,6) -*(6,7) has average length 53 over domain 

[31,75]. Because of these selections of the activity duration distributions, the polygonal 

approximation-based series-parallel reductions operators in the PART algorithms had 

greater difficulty maintaining accuracy during the reduction of this network than would 

have been the case if the distributions had been randomly selected (Section 3.5.1 [above]).

Table 21 presents comparisons of the PART-ind and PART-seq algorithm reductions 

and the simulation approximation of the doubly tied, double Wheatstone Bridge network 

obtained by the same means as the data in Table 19, and the CPM estimates of the first and 

second moments of the throughput distribution. Again, the PART-ind and PART-seq 

approximations were essentially identical and were very close to the simulation results. 

The relative error in the estimation of the mean was 0.23%; in the estimation of the standard 

deviation, 9.74%. The MADVs again have prob values > 20%. As expected, CPM 

underestimated the mean (Moder and Phillips, 1964), and the PART-ind and PART-seq 

algorithms overestimated it (Section 2.5.2, and Equation (9), Section 3.3.1 [above]).

Table 21. Comparisons of Reductions of a Doubly Tied, Double Wheatstone Bridge 
Network.

Source Mean Standard Deviation MADV
CPM 104.000 7.024 n/a

Simulation 103.960 6.970 n/a
PART-ind 104.194 7.649 0.0267
PART-seq 104.194 7.649 0.0267
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4.3.2 Performance Against Reported Performance of Competing Procedures

Only two researchers have reported performance results for competing approximation 

procedures: Dodin (1980, 1985a) for sequential approximation, and Hagstrom (1990) for 

ordered recursive conditioning. Hagstrom reported only the computation time (in CPU 

microseconds) to compute either moments or values of the cumulative throughput 

distributions of a set of 19 test networks with an ordered recursive conditioning algorithm 

based on discretization of activity duration distributions (Section 2.5.3 [above]). Since she 

reported no information concerning the accuracy of her algorithm, it is not possible to 

compare directly the performance of ordered recursive conditioning with the performance 

of polygonal approximation except on the basis of computation times for specific networks.

From a performance analysis of a sequential approximation algorithm, Dodin (1980, 

1985a) reported results for two experimental combinations: different activity distribution 

functions with a fixed network, and different size networks with a fixed activity 

distribution function for each activity. Table 3 (in Section 2.5.2 [above]) shows how the 

distribution type affects the performance for a randomly generated network with 10 nodes 

and 15 activities. Table 4 reflects the effect of network size; a uniform distribution was 

applied to each of eight networks. Table 22 shows the distribution functions used by 

Dodin. He held that the choice of the distributions and their parameters is of no particular 

significance except as it reflects the general applicability of an approximating procedure.

Dodin’s results (Tables 3 and 4) are reported for “a randomly generated network” tested 

with a particular distribution or pair of numbers of nodes and arcs. It is not clear whether 

the reported performance measures are for a single network randomly generated to test all 

the experimental cases, or whether they are the response values of the “best” network from 

a set of randomly generated networks each of which was tested under all the experimental 

cases - in either case the results are without value to the characterization of the performance 

of the sequential approximation algorithm - or whether they were obtained in some other
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way. In any event, it is not possible to compare directly the reported performance of 

sequential approximation with the performance of polygonal approximation.

To effect as reasonable and meaningful a comparison as possible between the reported 

performance of sequential approximation and the performance of polygonal approximation, 

20 “strongly random” networks were generated and their throughput distributions then 

approximated by both the PART-ind and PART-seq algorithms under each of Dodin’s 

experimental cases. In order to relate the performance of polygonal approximation, as 

reflected by the output products of the PART-ind and PART-seq algorithms, the raw data 

performance measures reported by Dodin were first converted to relative error performance 

measures. Tables 23 and 24 contain Dodin’s reported results from Tables 3 and 4 

expressed in relative error terms: the relative error of the average (standard deviation) is the 

difference between the averages (standard deviations) obtained from the sequential 

approximation algorithm and the simulation approximation, expressed as a percentage of 

the value obtained from the simulation approximation.

The test networks were generated and then reduced by the PART-ind and PART-seq 

validation programs [labeled PART-ind(val) and PART-seq(val), respectively]. Figure 47 

shows the input data files for both the PART-ind(val) and PART-seq(val) programs for the 

“all” types-of-distribution case from Tables 3 and 23: Part (a) shows the control file 

(CONTROL.VAL) and Part (b) shows the activity duration distributions data file 

(DATAH.VAL). The formats of these files are described in comment statements at the top 

of the code listings of the PART-ind(val) and PART-seq(val) programs in Appendices D 

and E, respectively. Figure 48 depicts the output from the PART-ind(val) program under 

output option 9 (only statistical comparisons), a summary table which includes for each 

network generated: for the K-S goodness-of-fit test for the network throughput distribution 

- the computed value of the K-S test statistic (labeled D-MAX) and its associated prob 

value; the relative errors of the approximations of the mean and standard deviation;
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Table 22. Probability Distribution Functions Used in Performance Analysis of a Sequential 
Approximation Algorithm. [Adapted from Dodin (1980)]

Distribution
Type

Mean or 
First 

Parameter

Stn. Dev. or 
Second 

Parameter Minimum Maximum
Uniform 5.0 n/a 0.0 10.0

Triangular 5.0 n/a 1.0 11.0
Normal 8.0 2.0 2.0 14.0

Exponential 2.0 n/a 0.0 15.0
Gamma 3.0 1.0 0.0 10.0

Beta 3.0 2.0 1.0 11.0

Table 23. Performance Measures for Sequential Approximation for Various Distribution 
Functions (Recomputed). [Adapted from Dodin (1980,1985a)]

Distribution
Type

Comparison of the Approximate DF with that of MCS
Rel. Error of 

Average
Rel. Error of 

Standard Deviation MADV AADV
Uniform 0.25% -8.43% 0.0426 0.0115

Triangular -0.27% -7.76% 0.0513 0.0180
Normal 0% -2.89% 0.0585 0.0206

Exponential 0.08% -9.95% 0.0328 0.0099
Gamma 1.44% 3.30% 0.0436 0.0122

Beta -0.54% -7.51% 0.0772 0.0275
Discrete -0.05% -1.01% 0.0083 0.0016

All 1.39% -4.92% 0.0274 0.0070

Table 24. Effect of Network Size on the Performance Measures for Sequential 
Approximation (Recomputed). [Adapted from Dodin (1980,1985a)]

No.
Nodes

No.
Arcs

Comparison of the Approximate DF with that of MCS
Rel. Error of 

Average
Rel. Error of 

Standard Deviation MADV AADV
10 15 0.25% -8.43% 0.0426 0.0115
20 40 1.94% -11.70% 0.0557 0.0162
30 50 0.79% -12.4495? 0.0525 0.0169
40 60 2.20% -14.83% 0.0633 0.0182
40 80 1.67% -9.17% 0.0303 0.0115
50 75 -0.06% -6.40% 0.0651 0.0259
50 100 2.78% -20.25% 0.0880 0.0263
60 150 3.46% -21.15% 0.1082 0.0306
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020 010 0015 9 10000 06 0.00
(a) Control data file.

1 5.000000 0.000000 1.000000 11.00000
2 8.000000 0.000000 2.000000 14.00000
3 2.000000 0.000000 0.000000 15.00000
4 3.000000 1.000000 0.000000 10.00000
5 3.000000 2.000000 1.000000 11.00000
6 0 .1 0 0 0 0 0  0 . 0 0 0 0 0 0  0 .0 0 0 0 0 0  1 0 .0 0 0 0 0

(b) Activity duration distributions data file.

Figure 47. PART-ind(val) and PART-seq(val) program input.

the number of nodes in the completely reducible network; and the number of cross- 

connections removed by the “independent multiple arcs” method. Figure 49 depicts the 

output from the PART-seq(val) program also under option 9, which is similar to the 

PART-ind(val) output, except that there is no report of the number of nodes in the 

completely reducible network or the number of cross-connections removed, since 

sequential approximation reduces a network without the “independent multiplication” 

(duplication) of arcs.

Summaries o f the performance of the PART-ind and PART-seq algorithms against 

Dodin’s experimental cases are presented in Table 25 (different activity distribution 

functions) and Table 26 (different size networks). The summaries contain the ranges of 

values experienced and the average absolute errors (of the “average” network) of the three 

performance measures - relative error of the average, relative error of the standard 

deviation, and MADV - and the values of these performance measures for the “best” 

network among the 20 “strongly random” networks generated for each experimental case.

Among the experimental cases involving the six different activity distribution functions 

with a network of fixed size, the performance measures of the “best” network reduced by
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STATISTICAL COMPARISONS FOR THE 20 NETWORKS GENERATED 
WITH 10 NODES AND 15 ACTIVITIES ARE:

K - S  C R I T I C A L  V A L U E S :
20 PERCENT = .1517
10 PERCENT = .1731
5 PERCENT = .1921
2 PERCENT = .2146
1 PERCENT = .2302

PROBABILITY VALUE RELATIVE ERROR RELATIVE ERROR TOTAL NO. CROSS
D-MAX (TYPE 1 ERROR PROB) OF MEAN OF STN DEV NODES

.0612 >20% 1.85% 2.49% 14

.0685 >20% 1.93% 1.27% 13

.0281 >20% 1.04% 1.21% 13

.0666 >20% 2.31% -3.29% 14

.0168 >20% .33% 4.57% 13

.0249 >20% .65% 10.91% 13

.0272 >20% -.59% 10.05% 13

.0168 >20% .22% 4.68% 11

.0197 >20% .59% 1.67% 13

.0865 >20% 3.08% -8.10% 15

.0442 >20% 1.01% 19.24% 12

.0698 >20% -.71% 22.23% 14

.0334 >20% -.85% 11.18% 11

.0226 >20% .74% 7.83% 15

.0670 >20% 1.77% 8.52% 16

.0373 >20% -.77% 10.29% 12

.0650 >20% -1.41% 22.59% 15

.0214 >20% .26% 9.50% 12

.0207 >20% .10% 8.87% 14

.0249 >20% .25% 12.03% 13

:pu time for PART PROCESSING IS 10.600 SECONDS

Figure 48. PART-ind(val) program output.
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STATISTICAL COMPARISONS FOR THE 20 NETWORKS GENERATED 
WITH 10 NODES AND 15 ACTIVITIES ARE:

K-S CRITICAL VALUES:
20 PERCENT = .1517
10 PERCENT = .1731
5 PERCENT = .1921
2 PERCENT = .2146
1 PERCENT = .2302

-M A X
P R O B A B I L I T Y  V A L U E  

( T Y P E  1 E R R O R  P R O B )
R E L A T I V E  E R R O R  

O F  M EA N
R E L A T I V E  E R R O R  

O F  S T N  D E V

0612 >20% 1.85% 2.49%
0686 >20% 1.93% 1.25%
0281 >20% 1.04% 1.21%
0666 >20% 2.31% -3.29%
0168 >20% .33% 4.57%
0249 >20% .65% 10.91%
0272 >20% -.59% 10.05%
0168 >20% .22% 4.68%
0197 >20% .59% 1.67%
0865 >20% 3.08% -8.10%
0313 >20% .68% 13.99%
0698 >20% -.71% 22.23%
0327 >20% -.80% 11.58%
0226 >20% .74% 7.83%
0670 >20% 1.77% 8.52%
0373 >20% -.77% 10.29%
0650 >20% -1.41% 22.59%
0214 >20% .26% 9.50%
0200 >20% .15% 9.21%
0249 >20% .25% 12.03%

CPU TIME FOR PART PROCESSING IS 8.090 SECONDS

Figure 49. PART-seq(val) program output.
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Table 25. Performance Measures for Polygonal Approximation of 20 Networks 
(with 10 Nodes and 15 Activities) with Various Distribution Functions.

Distribu
tion

Type

Perfor
mance

Measure

“Independent Multi 3le Arcs” Sequential Approximation
Relative 
Error of 
Average

Relative 
Error of 
Stn Dev MADV

Relative 
Error of 
Average

Relative 
Error of 
Stn Dev MADV

All
Uniform

Range
-0.40%

to
4.92%

-3.52%
to

4.50%

0.0044
to

0.1523

-0.40%
to

4.92%

-3.52%
to

4.50%

0.0044
to

0.1523
Best 0.14% 0.73% 0.0044 0.14% 0.73% 0.0044

Avg Abs 
Error 2.20% 4.37% 0.0568 2.20% 4.40% 0.0569

All Trian
gular

Range
-0.28%

to
3.84%

-7.31%
to

14.28%

0.0110
to

0.1273

-0.28%
to

3.84%

-7.31%
to

14.28%

0.0110
to

0.1273
Best -0.05% 5.08% 0.0110 -0.05% 5.08% 0.0110

Avg Abs 
Error 1.05% 5.49% 0.0434 1.05% 5.48% 0.0436

All
Normal

Range
0.07%

to
2.91%

8.03%
to

20.34%

0.0296
to

0.1459

0.06% 
to 

2.91 %

7.78%
to

20.34%

0.0309
to

0.1459
Best 0.34% 8.03% 0.0296 0.36% 7.78% 0.0335

Avg Abs 
Error 1.02% 14.74% 0.0626 1.02% 14.75% 0.0630

All Expo
nential

Range
-15.53%

to
2.96%

10.03%
to

51.02%

0.0597
to

0.2275

-15.53%
to

1.38%

9.74%
to

51.02%

0.0597
to

0.2275
Best 0.70% 18.37% 0.0597 0.70% 18.37% 0.0597

Avg Abs 
Error 7.66% 24.28% 0.1396 7.49% 24.35% 0.1338

All
Gamma

Range
-6.34%

to
2.68%

2.43%
to

20.07%

0.0178
to

0.1226

-6.34%
to

2.68%

2.43%
to

20.07%

0.0178
to

0.1226
Best -0.23% 2.43% 0.0178 -0.23% 2.43% 0.0178

Avg Abs 
Error 1.89% 9.80% 0.0444 1.90% 9.82% 0.0428

All
Beta

Range
0.14% 

to 
2.57%

-4.35%
to

11.66%

0.0142
to

0.0918

0.11%
to

2.57%

-4.35^
to

11.66%

0.0142
to

0.0918
Best 0.27% 5.93% 0.0142 0.27% 5.93% 0.0142

Avg Abs 
Error 1.04% 6.88% 0.0422 1.04% 6.88% 0.0421

Mixed
(All)

Range
-1.41%

to
3.08%

-8.10%
to

22.59%

0.0168
to

0.0865

-1.41%
to

3.08%

-8.10% 
to

22.59%

0.0168
to

0.0865
Best 0.22% 4.68% 0.0168 0.22% 4.68% 0.0168

Avg Abs 
Error 1.02% 9.03% 0.0411 1.01% 8.80% 0.0404
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Table 26. Effect of Network Size on the Performance Measures for Polygonal
Approximation of 20 Networks (with All-Uniform Activity Distributions).

No.
Nodes/

No.
Arcs

Perfor
mance

Measure

“Independent Multiple Arcs” Sequential Approximation
Relative 
Error of 
Average

Relative 
Error of 
Stn Dev MADV

Relative 
Error of 
Average

Relative 
Error of 
Stn Dev MADV

10 15
Range

-0.40%
to

4.92%

-13.52%
to

4.50%

0.0044
to

0.1523

-0.40%
to

4.92%

-13.52%
to

4.50%

0.0044
to

0.1523
Best 0.14% 0.73% 0.0044 0.14% 0.73% 0.0044

Av Abs Er 2.20% 4.37% 0.0568 2.20% 4.40% 0.0569

20 40
Range

1.61%
to

5.88%

-13.96%
to

4.46%

0.0453
to

0.1716

1.61%
to

5.88%

-13.96%
to

4.46%

0.0469
to

0.1716
Best 1.61% 0.90% 0.0453 1.61% 0.78% 0.0469

Av Abs Er 3.96% 5.40% 0.1204 3.95% 5.39% 0.1203

30 50
Range

0.88%
to

5.69%

-8.15% 
to 

8.18%

0.0354
to

0.1652

0.88%
to

5.69%

-8.15%
to

8.18%

0.0366
to

0.1642
Best 0.88% 8.18% 0.0356 0.88% 8.18% 0.0356

Av Abs Er 3.14% 3.62% 0.1007 3.14% 3.65% 0.1009

40 60
Range

0.19%
to

3.64%

-2.00%
to

11.00%

0.0127
to

0.1174

0.12% 
to 

3.63%

-1.83%
to

11.04%

0.0130
to

0.1153
Best 0.19% 5.85% 0.0127 0.20% 5.88% 0.0130

Av Abs Er 1.67% 4.66% 0.0591 1.64% 4.63% 0.0586

40 80
Range

1.45%
to

7.48%

-8.04%
to

11.65%

0.0479
to

0.2446

1.50%
to

7.48%

-7.82%
to

11.41%

0.0478
to

0.2456
Best 1.45% 3.25% 0.0479 1.50% 3.36% 0.0478

Av Abs Er 4.31% 4.64% 0.1482 4.30% 4.55% 0.1482

50 75
Range

-1.71%
to

5.64%

-5.67%
to

13.71%

0.0222
to

0.2145

-1.53%
to

6.03%

-5.09%
to

13.90%

0.0178
to

0.2239
Best 0.58% 4.13% 0.0222 0.48% 3.82% 0.0178

Av Abs Er 2.14% 6.58% 0.0758 2.15% 6.61% 0.0758

50 100
Range

-0.65%
to

5.40%

-1.94%
to

11.52%

0.0356
to

0.1690

-0.61%
to

5.45%

-1.02%
to

12.08%

0.0347
to

0.1734
Best 1.21% 4.72% 0.0358 0.51% 12.08% 0.0347

Av Abs & 2.13% 6.80% 0.0818 2.14% 6.80% 0.0823

60 150
Range

0.43%
to

8.99%

-4.92%
to

18.11%

0.0327
to

0.3026

0.35%
to

9.19%

-5.77%
to

18.45%

0.0313
to

0.3100
Best 0.43% 10.25% 0.0327 0.35% 9.88% 0.0313

Av Abs Er 4.80% 7.33% 0.1845 4.83% 7.45% 0.1858
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polygonal approximation were about the same or better than the results reported by Dodin 

for all except the exponential distribution. To control the build-up of error from initial 

distribution approximation and subsequent series-reduction operations, Dodin used 50% 

more discretization points for each exponential distribution than for all the other 

distributions, and he used the equal probabilities method for discretization of each 

exponential distribution as opposed to the equal intervals method for the discretization of all 

the other distributions, because the exponential has such a high coefficient of variation 

(Section 2.4.4 [above]). If the number of classes for polygonal approximation is similarly 

increased in PART algorithms, the error build-up due to exponential distributions is 

likewise attenuated. Among his treatment cases, Dodin included a seventh distribution 

type, the discrete distribution, which he did not have to discretize at the start of a network 

reduction with his sequential approximation algorithm. Because there were no initial 

discretization errors with discrete distributions, the performance measures for the discrete 

type-of-distribution case were the best of all of the eight experimental cases which Dodin 

considered, and the performance measures for the “all” types-of-distribution case benefited 

from the presence of some discrete distributions which were randomly selected as activity 

distributions for the network reduced by his sequential approximation algorithm (Tables 3 

and 23). However, the performance measures of the “best” network reduced by polygonal 

approximation for the “all” types-of-distribution case (labeled “Mixed (All)” in Table 25), 

which did not include any discrete distributions, were better than Dodin’s reported results 

by a factor of about two, and the performance measures of the “average” network were 

comparable to Dodin’s reported results for a single network reduced by his sequential 

approximation algorithm; this was Dodin’s only experimental case involving a mix of 

activity distribution types.

Among the experimental cases involving the eight different size networks with a fixed 

activity distribution function (uniform) for each activity, the performance measures for the
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“best” network reduced by polygonal approximation were about the same or better than the 

results reported by Dodin. For the two largest network sizes considered (50 nodes and 100 

activities, and 60 nodes and 150 activities), the performance measures for the “average” 

network reduced by polygonal approximation were comparable to Dodin’s reported results 

for a single network of each size reduced by his sequential approximation algorithm. As 

expected, all the performance measures - ranges of values, “best,” and “average” of he 

relative errors of the average, standard deviation, and MADV - fell off for the networks 

reduced by polygonal approximation as the number of activities increased for a fixed 

number of nodes (Table 26: compare the results for networks with 40 nodes and 60 

activities, then 80 activities, and for networks with 50 nodes and 75 activities, then 100 

activities), because of the increased number of initial distribution approximations and 

subsequent series-parallel reduction operations. Dodin reported a contrary finding for a 

network with 40 nodes and 60 activities, then 80 activities (Tables 4 and 24). However, 

since Dodin’s reported results are for a single network of each size reduced by his 

sequential approximation algorithm, this disagreement between his reported results and the 

performance of polygonal approximation is not meaningful.

For both of Dodin’s experimental combinations, the performance of the polygonal 

approximation-based PART-ind and PART-seq algorithms was virtually identical (Tables 

25 and 26), and about the same or better than Dodin’s reported results for his sequential 

approximation algorithm (Tables 3 and 23), based on comparisons of relative error-based 

performance measurements. Since each of Dodin’s experimental combinations ignored a 

source of variability - different activity distribution functions with a fixed network ignored 

variability due to network size, and different size networks with a fixed activity distribution 

function for each activity ignored variability due to activity distributions - his results cannot 

be generalized. However, the performance of the polygonal approximation-based 

algorithms for his two experimental combinations failed to support two of his original
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findings based on his discretization-based sequential approximation algorithm (Section

2.5.2 [above]). First, algorithm-approximated standard deviations of throughput 

distributions were not less than simulation-approximated standard deviations, even for a 

majority of the time, when different activity distributions were tested with a fixed network; 

consequently, Dodin’s finding that approximated distribution functions have less variation 

than distribution functions obtained by simulation was not supported. Rather, the variation 

of an approximated throughput distribution is a function of both the amount of variation in 

the activity distribution functions and the ability of an algorithm operating in a particular 

configuration, e.g., number of classes for a polygonal approximation-based algorithm, to 

capture that variation in the initial distribution approximation and subsequent series-parallel 

reduction operations. When activity distribution variation is low and an algorithm is 

effectively configured to control error build-up, algorithm-approximated standard 

deviations may be less than simulation-approximated values, which are functions of 

randomly generated deviates. However, when activity variation increases, i.e., when 

activity distributions have increasing coefficients of variation, unless an algorithm’s 

configuration is adjusted to account for the increasing variation (as Dodin did for the 

exponential distribution-type case), the relative error of the standard deviation will increase, 

as shown in Table 25. Second, although MADV increased as network size increased, 

when different size networks were tested with a fixed activity distribution function for each 

activity and a constant number of simulation replications (10,000) was used, the number of 

simulation replications was reasonably large (10 times Dodin’s number of 1,000 

replications); consequently, Dodin’s finding that increasing MADV with increasing 

network size is the consequence of fixed simulation sample sizes also was not supported. 

Rather, increasing MADV with increasing network size is explained by the increasing 

numbers of initial activity distribution approximations and subsequent series-parallel 

reduction operations needed to reduce the network with an approximation-based method.
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4.3.3 Performance Against Test Networks Constructed within an Experimental Design 

Following the experimental design for algorithm testing discussed in Section 3.5.1 

[above], a  series of validation experiments was conducted for the PART-ind and PART-seq 

algorithms based on how great a challenge a “strongly randomized” test network presented 

to the algorithms. As similar results were experienced for all of the experiments, only one 

is discussed in detail here. A three-factor ANOVA was selected. The design factors were 

specified as: the two PART algorithms (factor label METHOD); network size and structure, 

measured by the number of nodes and the number of activities in a network (factor label 

NETSIZE); and the challenge of the probability distribution functions of activity duration 

(factor label CHALLNG). The networks in Table 26 were repeated as the eight levels of 

the network size and structure factor. Three levels of the challenge factor were specified: 

low, medium, and high. A set of activity duration distributions was specified for each 

challenge level. Since pairs of activity duration distributions with “high” variances, i.e., 

whose standard deviations are high percentages of their means (high coefficients of 

variation), are the most difficult convolutions for a numerical approximation-based series- 

reduction operator, and pairs of maximally overlapping activity duration distributions are 

the most difficult for a numerical approximation-based parallel-reduction operator to 

reduce, these properties were used to specify the parameters of the distributions at each 

challenge factor level. Table 27 contains the coefficients of variation of the six probability 

distribution functions available in PART programs and shows how the coefficients can be 

increased by manipulation of the parameters of the distribution. The parameters and the 

domains of the distributions at each challenge factor level are in Table 28. As the challenge 

factor level rises, the coefficients of variation of the distributions and the amount of overlap 

of their domains both increase. The response variables were the three performance 

measures: MADV, the absolute relative error of the average, and the absolute error of the 

standard deviation.
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Table 27. Coefficients of Variation of Probability Distribution Functions.

Distribution Coefficient of Variationiadcn To increase coefficient:

Uniform on [a, b]

( b - a \  [
\ j n )  i

^1 fi+̂ |
l  2 i  L  ̂ a '  IJ

Increase difference 
between b and a .

Triangular on 
fob] .  

with mode m

■Ja2 + m2 + b2 -  m(a +b)~ ab^ 
3 ^  ,

(a  +m + b\
)

1 ( ,Ja2 + m2 +b2 -  m(a + b)~ ab> 
■J2\ a+m  + b

Increase b and m 
relative to a .

Normal in ,a )
a Increase a  relative to n 

or
decrease /a relative to a .

Exponential (/j ) £ - 1 Coefficient is constant

Gamma (a,/3) 
with shape 

parameter a  and 
scale parameter /3

'Jafi 1 
af} Jet

Decrease a .

/« 1 « 2

B eta (a ,,a2) with 
shape parameters 

a t and a 2.

^(al + a 2) J a l + a 2 + 1

— )a t + a j

Decrease a,  relative to

cu
\  a l(a l + a2 + 1)
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Table 28. Probability Distribution Functions Used in ANOVA of Performance Measures.

(a) Low Challenge Factor Level.

Distribution
Type

Mean or 
First 

Parameter

Stn. Dev. or 
Second 

Parameter Minimum Maximum
Uniform 42.5 n/a 40.0 45.0

Triangular 15.0 n/a 10.0 20.0
Normal 30.0 3.0 21.0 39.0

Exponential 2.0 2.0 0.0 15.0
Gamma 4.0 1.0 0.0 10.0

Beta 1.0 1.0 5.0 15.0

(b) Medium Challenge Factor Level.

Distribution
Type

Mean or 
First 

Parameter

Stn. Dev. or 
Second 

Parameter Minimum Maximum
Uniform 5.0 n/a 0.0 10.0

Triangular 10.0 n/a 5.0 20.0
Normal 15.0 2.0 9.0 21.0

Exponential 10.0 10.0 5.0 25.0
Gamma 3.0 1.0 0.0 10.0

Beta 3.0 2.0 10.0 20.0

(c) High Challenge Factor Level.

Distribution
Type

Mean or 
First 

Parameter

Stn. Dev. or 
Second 

Parameter Minimum Maximum
Uniform 10.0 n/a 0.0 20.0

Triangular 16.0 n/a 0.0 20.0
Normal 9.0 3.0 0.0 20.0

Exponential 5.0 5.0 0.0 20.0
Gamma 0.5 1.0 0.0 20.0

Beta 0.2 2.0 0.0 20.0
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Twenty “strongly random” networks were generated by the PART-ind(val) and PART- 

seq(val) programs for each of the 48 experimental cases: method by network size and 

structure by challenge. Part (a) of Table 29 presents the ANOVA results for the 

performance measure MADV, Part (b) for absolute relative error of the average 

(AVGERR), and Part (c) for absolute relative error of the standard deviation (STDERR). 

As expected, the performance of the PART-ind and PART-seq algorithms was virtually 

identical; method was not a statistically significant factor, so it was dropped from the 

models. Table 30 shows the results for the two-factor ANOVAs, excluding the method 

factor. While challenge was the overwhelmingly dominant factor in the models for MADV 

and AVGERR, network size and structure and the challenge-network size and structure 

interaction were also statistically significant. For STDERR, the factor strengths of 

challenge and network size and structure were about the same, and the challenge-network 

size and structure interaction was also statistically significant. The first and second 

moments of the performance measures for each of the two significant factors, challenge and 

network size and structure, are in Table 31. For MADV, the moments are about the same 

magnitude at the low and medium challenge factor levels, then jump by a factor of three at 

the high level; they increase slowly, almost monotonically with the number of activities 

(network size and structure). For AVGERR, the moments jump by a factor of about five at 

each challenge factor level, and also increase slowly, almost monotonically with the 

number of activities. For STDERR, the moments are virtually the same for the low and 

medium challenge factor levels, then jump by a factor of about 1.5 at the high level; they 

also increase slowly, almost monotonically with the number of nodes. Table 32 contains 

the moments and ranges of values of the performance measures by factors; Table 33 

presents these data by experimental cases.

The validation experiments were conducted with versions of the PART-ind(val) and 

PART-seq(val) programs which employ ten classes for polygonal approximation, without
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Table 29. ANOVA of Performance Measures for Three Factors, 

(a) Performance Measure: MADV.

D e p e n d e n t  V a r i a b l e :  MADV 

S o u r c e  OF Sum o f  S q u a r e s M ea n  S q u a r e F V a l u e P r  > F

M o d e l  4 7 3 . 5 3 6 1 5 3 0 6 0 . 0 7 5 2 3 7 3 0 2 8 . 2 3 0 . 0 0 0 1

E r r o r  9 1 2 2 . 4 3 0 8 5 6 9 3 0 . 0 0 2 6 6 5 4 1

C o r r e c t e d  T o t a l  9 5 9

R - S q u a r e

5 . 9 6 7 0 0 9 9 9  

c .  V. R o o t  MSE MADV M ea n

0 . 5 9 2 6 1 7 5 1 . 5 1 4 0 4 0 . 0 5 1 6 2 7 6 4 0 . 1 0 0 2 2 0 5 2

S o u r c e  DF T y p e  I SS M e a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 0 0 0 0 9 3 8 0 . 0 0 0 0 0 9 3 8 0 . 0 0 0 . 9 5 2 7
CHALLNG 2 2 . 4 8 3 3 3 4 4 5 1 . 2 4 1 6 6 7 2 2 4 6 5 . 8 4 0 . 0 0 0 1
ME T H0D*C HAL L NG 2 0 . 0 0 0 0 6 8 2 6 0 . 0 0 0 0 3 4 1 3 0 . 0 1 0 . 9 8 7 3
NET SI Z E 7 0 . 8 0 1 1 9 8 1 9 0 . 1 1 4 4 5 6 8 8 4 2  . 9 4 0 . 0 0 0 1
METHOD*NETSIZE 7 0 . 0 0 0 0 5 8 0 4 0 . 0 0 0 0 0 8 2 9 0 . 0 0 1 . 0 0 0 0
CHALLNG*NET S 1 ZE 14 0 . 2 5 1 3 5 3 2 3 0 . 0 1 7 9 5 3 8 0 6 . 7 4 0 . 0 0 0 1
METHOD*CHALLN*NETSIZ 14 0 . 0 0 0 1 3 1 5 2 0 . 0 0 0 0 0 9 3 9 0 . 0 0 1 . 0 0 0 0

S o u r c e  OF T y p e  I I I  SS M e a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 0 0 0 0 9 3 8 0 . 0 0 0 0 0 9 3 8 0 . 0 0 0 . 9 5 2 7
CHALLNG 2 2 . 4 8 3 3 3 4 4 5 1 . 2 4 1 6 6 7 2 2 4 6 5 . 8 4 0 . 0 0 0 1
MET HOD*CHAL LNG 2 0 . 0 0 0 0 6 8 2 6 0 . 0 0 0 0 3 4 1 3 0 . 0 1 0 . 9 8 7 3
N ET SI Z E 7 0 . 8 0 1 1 9 8 1 9 0 . 1 1 4 4 5 6 8 8 4 2  . 9 4 0 . 0 0 0 1
METHOD*NETS.I ZE 7 0 . 0 0 0 0 5 8 0 4 0 . 0 0 0 0 0 8 2 9 0 . 0 0 1 . 0 0 0 0
CHALLNG*NETSIZE 14 0 . 2 5 1 3 5 3 2 3 0 . 0 1 7 9 5 3 8 0 6 . 7 4 0 . 0 0 0 1
METHOD*CHALLN*NETSIZ 14 0 . 0 0 0 1 3 1 5 2 0 . 0 0 0 0 0 9 3 9 0 . 0 0 1 . 0 0 0 0

214



www.manaraa.com

R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 29 cont.

(b) Performance Measure: Absolute Relative Error of the Average.

D e p e n d e n t  V a r i a b l e :  AVGERR

S o u r c e DF Sum o f  S q u a r e s Me a n  S q u a r e F V a I u e P r  > F

M ode  I 4 7 6 5 2 9 . 6 7 0 4 7 4 0 6 1 3 8 . 9 2 9 1 5 9 0 2 31 . 0 4 0 . 0 0 0 1

E r r o r 9 1 2 4 0 8 1 . 3 0 8 6 7 5 0 0 4 . 4 7 5 1 1 9 1 6

C o r r e c t e d  T o t a l 9 5 9 1 0 6 1 0 . 9 7 9 1 4 9 0 6

R - S q u a r e C.  V. R o o t  MSE AVGERR M ea n

0 . 6 1 5 3 6 9 8 9 . 1 2 8 9 5 2 . 1 1 5 4 4 7 7 4 2 . 3 7 3 4 6 8 7 5

S o u r c e DF T y p e  I SS M e a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 2 1 9 4 5 9 4 0 . 0 2 1 9 4 5 9 4 0 . 0 0 0 . 9 4 4 2
CHALLNG 2 5 9 6 5 . 3 6 3 5 1 1 8 7 2 9 8 2 . 6 8 1 7 5 5 9 4 6 6 6 . 5 0 0 . 0 0 0 1
METHOD*CHALLNG 2 0 . 0 7 3 6 5 8 1 3 0 . 0 3 6 8 2 9 0 6 0 . 0 1 0 . 9 9 1 8
NET SI Z E 7 2 6 1 . 3 8 4 5 1 3 2 3 3 7 . 3 4 0 6 4 4 7 5 8 . 3 4 0 . 0 0 0 1
METHOD*NETSIZE 7 0 . 0 7 3 0 6 8 2 3 0 . 0 1 0 4 3 8 3 2 0 . 0 0 1 . 0 0 0 0
CHALLNG*NETSIZE 14 3 0 2 . 5 7 5 2 2 6 4 6 2 1 . 6 1 2 5 1 6 1 8 4 . 8 3 0 . 0 0 0 1
METHOD*CHALLN*NETSIZ 14 0 . 1 7 8 5 5 0 2 1 0 . 0 1 2 7 5 3 5 9 0 . 0 0 1 . 0 0 0 0

S o u r c e DF T y p e  I I I  SS M e a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 2 1 9 4 5 9 4 0 . 0 2 1 9 4 5 9 4 0 . 0 0 0 . 9 4 4 2
CHALLNG 2 5 9 6 5 . 3 6 3 5 1 1 8 7 2 9 8 2 . 6 8 1 7 5 5 9 4 6 6 6 . 5 0 0 . 0 0 0 1
METHOD*CHALLNG 2 0 . 0 7 3 6 5 8 1 3 0 . 0 3 6 8 2 9 0 6 0 . 0 1 0 . 9 9 1 8
NETSI ZE 7 2 6 1 . 3 8 4 5 1 3 2 3 3 7 . 3 4 0 6 4 4 7 5 8 . 3 4 0 . 0 0 0 1
METHOD*NETSIZE 7 0 . 0 7 3 0 6 8 2 3 0 . 0 1 0 4 3 8 3 2 0 . 0 0 1 . 0 0 0 0
C H A L L N G * N E T S I Z E 1 4 3 0 2 . 5 7 5 2 2 6 4 6 2 1 . 6 1 2 5 1 6 1 8 4 . 8 3 0 . 0 0 0 1
METHOD*CHALLN*NETSIZ 14 0 . 1 7 8 5 5 0 2 1 0 . 0 1 2 7 5 3 5 9 0 . 0 0 1 . 0 0 0 0
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Table 29 cont.

(c) Performance Measure: Absolute Relative Error of the Standard Deviation.

D e p e n d e n t  V a r i a b l e :  STDERR

S o u r c e DF Sum o f  S q u a r e s M e a n  S q u a r e F Va I u e P r  > F

Mode  I 4 7 7 0 9 2 0 . 0 8 7 1 2 9 9 9 1 5 0 8 . 9 3 8 0 2 4 0 4 1 4 . 9 6 0 . 0 0 0 1

E r r o r 9 1 2 9 1 9 7 0 . 5 6 2 3 1 0 0 2 1 0 0 . 8 4 4 9 1 4 8 1

C o r r e c t e d  T o t a l 9 5 9 1 6 2 8 9 0 . 6 4 9 4 4 0 0 1

R - S q u a r e C.  V. R o o t  MSE STDERR Mea n

0 . 4 3 5 3 8 5 51 . 1 5 4 5 9 1 0 . 0 4 2 1 5 6 8 8 1 9 . 6 3 1 0 0 0 0 0

S o u r c e DF T y p e  I SS M e a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 6 7 3 3 5 0 0 0 . 0 6 7 3 3 5 0 0 0 . 0 0 0 . 9 7 9 4
CHALLNG 2 1 7 9 8 7 . 3 5 6 0 9 3 1 2 8 9 9 3 . 6 7 8 0 4 6 5 6 8 9 . 1 8 0 . 0 0 0 1
ME T HOD*CHAL L NG 2 0 . 5 8 4 4 8 4 3 8 0 . 2 9 2 2 4 2 1 9 0 . 0 0 0 . 9 9 7 1
NET SI Z E 7 4 8 8 6 6 . 9 8 8 9 1 1 6 6 6 9 8 0 . 9 9 8 4 1 5 9 5 6 9 . 2 3 0 . 0 0 0 1
ME T HOD*NE T S I Z E 7 5 . 0 7 7 0 2 0 0 0 0 . 7 2 5 2 8 8 5 7 0 . 0 1 1 . 0 0 0 0
CHALLNG*NETS1ZE 14 4 0 3 7 . 2 6 8 5 3 5 2 1 2 8 8 . 3 7 6 3 2 3 9 4 2 . 8 6 0 . 0 0 0 3
METHOD*CHALLN*NETSIZ K 2 2 . 7 4 4 7 5 0 6 3 1 . 6 2 4 6 2 5 0 4 0 . 0 2 1 . 0 0 0 0

S o u r c e DF T y p e  I I I  SS Me a n  S q u a r e F V a l u e P r  > F

METHOD 1 0 . 0 6 7 3 3 5 0 0 0 . 0 6 7 3 3 5 0 0 0 . 0 0 0 . 9 7 9 4
CHALLNG 2 1 7 9 8 7 . 3 5 6 0 9 3 1 2 8 9 9 3 . 6 7 8 0 4 6 5 6 8 9 . 1 8 0 . 0 0 0 1
METHOD*CHALLNG 2 0 . 5 8 4 4 8 4 3 8 0 . 2 9 2 2 4 2 1 9 0 . 0 0 0 . 9 9 7 1
NETSI ZE 7 4 8 8 6 6 . 9 8 8 9 1 1 6 6 6 9 8 0 . 9 9 8 4 1 5 9 5 6 9 . 2 3 0 . 0 0 0 1
MET HOD *  N E T S'l ZE 7 5 . 0 7 7 0 2 0 0 0 0 . 7 2 5 2 8 8 5 7 0 . 0 1 1 . 0 0 0 0
CHALLNG*NETSIZE 14 4 0 3 7 . 2 6 8 5 3 5 2 1 2 8 8 . 3 7 6 3 2 3 9 4 2 . 8 6 0 . 0 0 0 3
METHOD*CHALLN*NETSIZ 14 2 2 . 7 4 4 7 5 0 6 2 1 . 6 2 4 6 2 5 0 4 0 . 0 2 1 . 0 0 0 0
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Table 30. ANOVA of Performance Measures for Two Factors, 

(a) Performance Measure: MADV.

D e p e n d e n t  V a r i a b l e :  MADV

S o u r c e  DF S u m  o f  S q u a r e s M e a n  S q u a r e F V a l u e P r  >■ F

M o d e l  23 3 . 5 3 5 8 8 5 8 6 0 . 1 5 3 7 3 4 1 7 5 9 . 1 9 0 . 0 0 0 1

E r r o r  9 3 6 2 . A 3 1 1 2 4 1 2 0 . 0 0 2 5 9 7 3 5

C o r r e c t e d  T o t a l  9 5 9 5 . 9 6 7 0 0 9 9 9

R - S q u a  r e C . V . R o o t  MSE MADV Mean

0 . 5 9 2 5 7 2 5 0 . 8 5 2 1 1 0 . 0 5 0 9 6 4 2 5 0 . 1 0 0 2 2 0 5 2

S o u r c e  DF T y p e  I SS Me a n  S q u a r e F V a l u e P r  > F

CHALLNG 2 2 . 4 8 3 3 3 A A 5 1 . 2 4 1 6 6 7 2 2 4 7 8 . 0 5 0 . 0 0 0 1
NET SI Z E 7 0 . 8 0 1 1 9 8 1 9 0 . 1  1 4 4 5 6 8 8 4 4 . 0 7 0 . 0 0 0 1
CHAL LNG*NE T S I Z E  K 0 . 2 5 1 3 5 3 2 3 0 . 0 1 7 9 5 3 8 0 6 . 9 1 0 . 0 0 0 1

S o u r c e  DF T y p e  I I I  SS M ea n  S q u a r e F V a l u e P r  > F

CHALLNG 2 2 . A8333AA5 1 . 2 4 1 6 6 7 2 2 4 7 8 . 0 5 0 . 0 0 0 1
NET SI Z E 7 0 . 8 0 1 1 9 8 1 9 0 . 1 1 4 4 5 6 8 8 4 4 . 0 7 0 . 0 0 0 1
CHALLNG*NETSIZE U 0 . 2 5 1 3 5 3 2 3 0 . 0 1 7 9 5 3 8 0 6 . 9 1 0 . 0 0 0 1
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Table 30 cont.

(b) Performance Measure: Absolute Relative Error of the Average.

D e p e n d e n t  V a r i a b l e :  AVGERR

S o u r c e DF Sum o f  S q u a r e s M ea n  S q u a r e F V a I u e P r  >' F

Mode I 23 6 5 2 9 . 3 2 3 2 5 1 5 6 2 8 3 . 8 8 3 6 1 9 6 3 6 5 . 1 0 0 . 0 0 0 1

E r r o r 9 3 6 4 0 8 1 . 6 5 5 8 9 7 5 0 4 . 3 6 0 7 4 3 4 8

C o r r e c t e d  T o t a l 9 5 9 1 0 6 1 0 . 9 7 9 1 4 9 0 6

R - S q u a r e C . V . R o o t  MSE AVGERR M ea n

0 . 6 1 5 3 3 7 8 7 . 9 8 2 5 9 2 . 0 8 8 2 3 9 3 3 2 . 3 7 3 4 6 8 7 5

S o u r c e DF T y p e  I SS M ea n  S q u a r e F V a l u e P r  > F

CHALLNG 2 5 9 6 5 . 3 6 3 5 1 1 8 7 2 9 8 2 . 6 8 1 7 5 5 9 4 6 8 3 . 9 8 0 . 0 0 0 1
NET SI Z E 7 2 6 1 . 3 8 4 5 1 3 2 3 3 7 . 3 4 0 6 4 4 7 5 8 . 5 6 0 . 0 0 0 1
CHALLNG*NETSIZE 14 3 0 2 . 5 7 5 2 2 6 4 6 21 . 6 1 2 5 1 6 1 8 4 . 9 6 0 . 0 0 0 1

S o u r c e DF T y p e  I I I  SS M ea n  S q u a r e F V a l u e P r  > F

CHALLNG 2 5 9 6 5 . 3 6 3 5 1 1 8 7 2 9 8 2 . 6 8 1 7 5 5 9 4 6 8 3 . 9 8 0 . 0 0 0 1
NET SI Z E 7 2 6 1 . 3 8 4 5 1 3 2 3 3 7 . 3 4 0 6 4 4 7 5 8 . 5 6 0 . 0 0 0 1
CHALLNG*NETSIZE 14 3 0 2 . 5 7 5 2 2 6 4 6 2 1 . 6 1 2 5 1 6 1 8 4 . 9 6 0 . 0 0 0 1
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Table 30 cont.

(c) Performance Measure: Absolute Relative Error of the Standard Deviation.

D e p e n d e n t  V a r i a b l e :  STDERR

S o u r c e DF Sum o f  S q u a r e s Me a n  S q u a r e F V a l u e P r  > • F

Mode I 23 7 0 8 9 1 . 6 1 3 5 3 9 9 9 3 0 8 2 . 2 4 4 0 6 6 9 6 31 . 3 6 0 . 0 0 0 1

E r r o r 9 3 6 9 1 9 9 9 . 0 3 5 9 0 0 0 2 9 8 . 2 8 9 5 6 8 2 7

C o r r e c t e d  T o t a l 9 5 9 1 6 2 8 9 0 . 6 4 9 4 4 0 0 1

R - S q u a r e C . V . R o o t  MSE STDERR Mean

0 . 4 3 5 2 1 0 5 0 . 5 0 2 3 2 9 . 9 1 4 1 0 9 5 6 1 9 . 6 3 1 0 0 0 0 0

S o u r c e DF T y p e  1 SS Mea n  S q u a r e F V a l u e P r  > F

CHALLNG 2 1 7 9 8 7 . 3 5 6 0 9 3 1 2 8 9 9 3 . 6 7 8 0 4 6 5 6 91 . 5 0 0 . 0 0 0 1
NET SI Z E 7 4 8 8 6 6 . 9 8 8 9 1 1 6 6 6 9 8 0 . 9 9 8 4 1 5 9 5 71 . 0 2 0 . 0 0 0 1
CHALLNG*NETSIZE 14 4 0 3 7 . 2 6 8 5 3 5 2 1 2 8 8 . 3 7 6 3 2 3 9 4 2 . 9 3 0 . 0 0 0 2

S o u r c e DF T y p e  I I I  SS M ea n  S q u a r e F V a l u e P r  > F

CHALLNG 2 1 7 9 8 7 . 3 5 6 0 9 3 1 2 8 9 9 3 . 6 7 8 0 4 6 5 6 9 1 . 5 0 0 . 0 0 0 1
NET SI Z E 7 4 8 8 6 6 . 9 8 8 9 1 1 6 6 6 9 8 0 . 9 9 8 4 1 5 9 5 7 1 . 0 2 0 . 0 0 0 1
CHALLNG*NE TS I ZE 14 4 0 3 7 . 2 6 8 5 3 5 2 1 2 8 8 . 3 7 6 3 2 3 9 4 2 . 9 3 0 . 0 0 0 2
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Table 31. Moments of Performance Measures for Significant Factors (by Measures).

(a) Performance Measure: MADV.

L e v e l  o f ............................ .....................................MAOV...................................
CHALLNG N M e a n  SO

1 3 2 0  0 . 0 5 2 9 1 8 7 5  0 . 0 3 1 8 1 7 8 5
2 3 2 0  0 . 0 7 6 9 4 4 6 9  0 . 0 4 7 6 6 6 0 3
3 3 2 0  0 . 1 7 0 7 9 8 1 2  0 . 0 8 7 3 8 5 2 8

L e v e l  o f ...........................  MADV...................................
NET SI Z E N M e a n  SO

1 1 2 0  0 . 0 4 9 7 4 9 1 7  0 . 0 4 5 2 1 2 5 6
2 1 2 0  0 . 0 8 3 4 8 5 0 0  0 . 0 7 3 2 5 9 5 9
3 1 2 0  0 . 0 8 5 6 6 3 3 3  0 . 0 5 8 1 7 5 3 7
4 1 2 0  0 . 0 9 1 6 8 3 3 3  0 . 0 6 4 0 6 1 1 5
5 1 2 0  0 . 1 1 8 7 9 5 0 0  0 . 0 7 3 0 4 9 0 4
6 1 2 0  0 . 0 9 6 7 4 3 3 3  0 . 0 5 3 7 5 4 1 2
7 1 2 0  0 . 1 2 4 0 4 7 5 0  0 . 0 8 8 9 2 5 1 0
8 1 2 0  0 . 1 5 1 5 9 7 5 0  0 . 1 1 1 2 5 4 1 9

(b) Performance Measure: Absolute Relative Error of the Average.

L e v e l  o f   AVGERR.................................
CHALLNG N M e a n  SO

1 3 2 0  0 . 2 3 9 0 0 0 0 0  0 . 2 8 3 5 9 3 6 0
2 3 2 0  1 . 0 1 0 9 0 6 2 5  0 . 9 1 7 9 3 5 6 0
3 3 2 0  5 . 8 7 0 5 0 0 0 0  3 . 6 9 3 2 4 0 7 6

L e v e l  o f   AVGERR................................
NETSIZE N M e a n  SO

1 1 2 0  1 . 6 5 2 1 6 6 6 7  2 . 5 6 4 1 9 3 3 8
2 1 2 0  2 . 4 6 4 6 6 6 6 7  3 . 4 9 4 2 5 1 9 3
3 1 2 0  2 . 0 1 0 6 6 6 6 7  2 . 7 1 8 4 5 9 0 7
4 1 2 0  2 . 1 2 7 2 5 0 0 0  2 . 9 1 9 1 6 9 9 0
5 1 2 0  2 . 6 7 6 3 3 3 3 3  3 . 2 3 8 0 5 5 9 9
6 1 2 0  1 . 8 8 9 0 0 0 0 0  2 . 4 8 2 1 4 0 3 7
7 1 2 0  2 . 8 3 7 1 6 6 6 7  3 . 9 2 8 4 0 1 6 9
8 1 2 0  3 . 3 3 0 5 0 0 0 0  4 . 4 9 4 0 5 8 2 3

(c) Performance Measure: Absolute Relative Error of the Standard Deviation.

L e v e l  o f   STDERR................................
CHALLNG N M e a n  SO

1 3 2 0  1 6 . 6 8 2 4 0 6 2  9 . 8 1 3 2 8 0 3
2 3 2 0  1 6 . 4 5 9 3 7 5 0  9 . 4 1 8 0 1 9 8
3 3 2 0  2 5 . 7 5 1 2 1 8 7  1 6 . 4 0 8 6 1 7 6

L e v e l  o f   STDERR................................
NETSIZE N M e a n SD

1 1 2 0 5 . 8 1 0 3 3 3 3 3 . 6 0 8 9 6 6 4
2 1 2 0 1 1 . 1 3 6 2 5 0 0 8 . 1 8 4 1 6 2 0
3 1 2 0 1 8 . 3 4 4 5 8 3 3 1 0 . 3 5 7 1 7 6 0
4 1 2 0 21 . 4 2 2 5 8 3 3 1 2 . 2 6 6 8 3 7 6
5 1 2 0 2 1 . 6 9 0 5 8 3 3 1 0 . 8 4 2 6 5 2 1
6 1 2 0 2 5 . 6 8 9 2 5 0 0 1 4 . 0 7 5 4 2 2 5
7 1 2 0 2 4 . 9 7 6 6 6 6 7 1 2 . 1 6 0 2 7 5 1
8 1 2 0 2 7 . 9 7 7 7 5 0 0 1 2 . 5 2 5 0 7 7 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 32. Moments and Ranges of Performance Measures for Significant Factors (by Factors), 

(a) Factor Challenge of Probability Distribution Functions.

CHALLNG N O bs V a r i a b l e N Me a n S t d  D e v M i n i  mum Max i mum

1 3 2 0 MADV 3 2 0 0 . 0 5 2 9 1 8 7 0 . 0 3 1 8 1 7 8 0 . 0 0 8 9 0 0 0 0 . 1 6 2 6 0 0 0
AVGERR 3 2 0 0 . 2 3 9 0 0 0 0 0 . 2 8 3 5 9 3 6 0 2 . 2 1 0 0 0 0 0
STDERR 3 2 0 1 6 . 6 8 2 4 0 6 2 9 . 8 1 3 2 8 0 3 0 . 4 0 0 0 0 0 0 4 1 . 8 8 0 0 0 0 0

2 3 2 0 MADV 3 2 0 0 . 0 7 6 9 4 4 7 0 . 0 4 7 6 6 6 0 0 . 0 0 7 7 0 0 0 0 . 2 6 9 0 0 0 0
AVGERR 3 2 0 1 . 0 1 0 9 0 6 2 0 . 9 1 7 9 3 5 6 0 . 0 2 0 0 0 0 0 4 . 5 0 0 0 0 0 0
STDERR 3 2 0 1 6 . 4 5 9 3 7 5 0 9 - A 1 8 0 1 9 8 0 . 0 7 0 0 0 0 0 4 0 . 9 8 0 0 0 0 0

3 3 2 0 MADV 3 2 0 0 . 1 7 0 7 9 8 1 0 . 0 8 7 3 8 5 3 0 . 0 1 9 6 0 0 0 0 . 5 0 9 4 0 0 0
AVGERR 3 2 0 5 . 8 7 0 5 0 0 0 3 . 6 9 3 2 4 0 8 0 . 0 4 0 0 0 0 0 1 8 . 4 0 0 0 0 0 0
STDERR 3 2 0 2 5 . 7 5 1 2 1 8 7 1 6 . 4 0 8 6 1 7 6 0 . 1 6 0 0 0 0 0 8 8 . 7 5 0 0 0 0 0

ro
to



www.manaraa.com

R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

Table 32 cont.

(b) Factor: Network Size.

NETSI ZE N O b s V a r i a b l e N M ea n S t d  D e v M i n i  mum Max i mum

1 1 2 0 MADV 1 2 0 0 . 0 4 9 7 4 9 2 0 . 0 4 5 2 1 2 6 0 . 0 0 7 7 0 0 0 0 . 1 9 4 1 0 0 0
AVGERR 1 20 1 . 6 5 2 1 6 6 7 2 . 5 6 4 1 9 3 4 0 . 0 2 0 0 0 0 0 1 0 . 9 3 0 0 0 0 0
STDERR 1 2 0 5 . 8 1 0 3 3 3 3 3 . 6 0 8 9 6 6 4 0 . 1 6 0 0 0 0 0 1 6 . 1 7 0 0 0 0 0

2 1 2 0 MADV 1 20 0 . 0 8 3 4 8 5 0 0 . 0 7 3 2 5 9 6 0 . 0 0 9 4 0 0 0 0 . 3 1 9 4 0 0 0
AVGERR 1 2 0 2 . 4 6 4 6 6 6 7 3 . 4 9 4 2 5 1 9 0 . 0 3 0 0 0 0 0 1 4 . 0 3 0 0 0 0 0
STDERR 1 2 0 1 1 . 1 3 6 2 5 0 0 8 . 1 8 4 1 6 2 0 0 . 1 2 0 0 0 0 0 4 3 . 5 6 0 0 0 0 0

3 1 2 0 MADV 1 20 0 . 0 8 5 6 6 3 3 0 . 0 5 8 1 7 5 4 0 . 0 1 7 0 0 0 0 0 . 2 5 5 8 0 0 0
AVGERR 1 2 0 2 . 0 1 0 6 6 6 7 2 . 7 1 8 4 5 9 1 0 9 . 9 5 0 0 0 0 0
STDERR 1 2 0 1 8 . 3 4 4 5 8 3 3 1 0 . 3 5 7 1 7 6 0 0 . 5 1 0 0 0 0 0 5 4 . 5 7 0 0 0 0 0

4 1 20 MADV 1 20 0 . 0 9 1 6 8 3 3 0 . 0 6 4 0 6 1 2 0 . 0 1 4 3 0 0 0 0 . 2 8 8 7 0 0 0
AVGERR 1 2 0 2 . 1 2 7 2 5 0 0 2 . 9 1 9 1 6 9 9 0 1 1 . 1 6 0 0 0 0 0
STDERR 1 2 0 21 . 4 2 2 5 8 3 3 1 2 . 2 6 6 8 3 7 6 0 . 2 6 0 0 0 0 0 5 9 . 9 4 0 0 0 0 0

5 1 2 0 MADV 1 2 0 0 . 1 1 8 7 9 5 0 0 . 0 7 3 0 4 9 0 0 . 0 2 1 4 0 0 0 0 . 3 6 1 0 0 0 0
AVGERR 1 2 0 2 . 6 7 6 3 3 3 3 3 . 2 3 8 0 5 6 0 0 . 0 2 0 0 0 0 0 1 2 . 6 2 0 0 0 0 0
STDERR 1 2 0 21 . 6 9 0 5 8 3 3 1 0 . 8 4 2 6 5 2 1 0 . 0 7 0 0 0 0 0 5 0 . 9 2 0 0 0 0 0

6 1 2 0 MADV 1 2 0 0 . 0 9 6 7 4 3 3 0 . 0 5 3 7 5 4 1 0 . 0 2 0 3 0 0 0 0 . 2 5 9 3 0 0 0
AVGERR 1 2 0 1 . 8 8 9 0 0 0 0 2 . 4 8 2 1 4 0 4 0 . 0 2 0 0 0 0 0 1 0 . 8 3 0 0 0 0 0
S T D E R R 1 2 0 2 5 . 6 8 9 2 5 0 0 1 4 . 0 7 5 4 2 2 5 7 . 8 5 0 0 0 0 0 8 8 . 7 5 0 0 0 0 0

7 1 2 0 MADV 1 2 0 0 . 1 2 4 0 4 7 5 0 . 0 8 8 9 2 5 1 0 . 0 1 8 8 0 0 0 0 . 3 8 5 3 0 0 0
AVGERR 1 2 0 2 . 8 3 7 1 6 6 7 3 . 9 2 B 4 0 1 7 0 1 7 . 4 1 0 0 0 0 0
STDERR 1 2 0 2 4 . 9 7 6 6 6 6 7 1 2 . 1 6 0 2 7 5 1 9 . 0 0 0 0 0 0 0 7 2 . 1 7 0 0 0 0 0

8 1 20 MADV 1 2 0 0 . 1 5 1 5 9 7 5 0 . 1 1 1 2 5 4 2 0 . 0 2 1 2 0 0 0 0 . 5 0 9 4 0 0 0
AVGERR 1 2 0 3 . 3 3 0 5 0 0 0 4 . 4 9 4 0 5 8 2 0 . 0 2 0 0 0 0 0 1 8 . 4 0 0 0 0 0 0
STDERR 1 2 0 2 7 . 9 7 7 7 5 0 0 1 2 . 5 2 5 0 7 7 3 5 . 6 8 0 0 0 0 0 6 2 . 5 6 0 0 0 0 0
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Table 33. Moments and Ranges of Performance Measures for Significant Factors (by Experimental Cases).

(a) Factors: Low Challenge Level by Network Size.

C H AL L NG

1

NETSIZE N Obs V a r i a b l e N Mean S t d  Dev Mi n i  mum Max i mum

1 40 MADV 40 0 . 0 2 6 7 0 7 5 0 . 0 1 8 4 5 0 5 0 . 0 0 8 9 0 0 0 0 . 0 7 4 0 0 0 0
AVGERR 40 0 .  1 9 3 7 5 0 0 0 .  1 8 5 7 9 9 6 0 . 0 4 0 0 0 0 0 0 . 6 4 0 0 0 0 0
STDERR 40 5 . 5 2 3 0 0 0 0 3 . 0 2 5 7 9 3 6 0 . 4 0 0 0 0 0 0 1 2 . 4 2 0 0 0 0 0

2 40 MADV 40 0 . 0 3 0 4 7 0 0 0 . 0 2 0 8 3 8 3 0 . 0 0 9 4 0 0 0 0 . 0 9 8 5 0 0 0
AVGERR 40 0 .  1 5 3 0 0 0 0 0 . 1 6 0 0 5 1 3 0 . 0 3 0 0 0 0 0 0 . 6 6 0 0 0 0 0
STDERR 40 8 . 4 5 6 7 5 0 0 4 . 1 3 0 4 7 9 2 1 . 6 8 0 0 0 0 0 1 6 . 9 5 0 0 0 0 0

3 40 MADV 40 0 . 0 5 3 8 1 5 0 0 . 0 3 2 3 6 9 8 0 . 0 1 7 0 0 0 0 0 . 1 4 8 6 0 0 0
AVGERR 40 0 . 3 0 4 2 5 0 0 0 . 4 7 6 6 1 6 7 0 2 . 2 1 0 0 0 0 0
STDERR 40 1 7 . 3 6 5 2 5 0 0 9 . 9 6 2 6 0 7 3 2 . 5 8 0 0 0 0 0 4 0 . 6 9 0 0 0 0 0

4 40 MADV 40 0 . 0 4 7 9 6 2 5 0 . 0 2 7 7 1 2 6 0 . 0 1 4 3 0 0 0 0 . 1 2 0 0 0 0 0
AVGERR 40 0 . 1 7 4 0 0 0 0 0 . 2 2 8 7 8 5 0 0 0 . 8 2 0 0 0 0 0
STDERR 40 1 6 . 9 2 0 5 0 0 0 8 . 9 0 7 9 9 5 0 3 . 7 5 0 0 0 0 0 3 6 . 5 5 0 0 0 0 0

5 40 MADV 40 0 . 0 6 7 0 3 5 0 0 . 0 2 7 8 7 7 3 0 . 0 2 1 4 0 0 0 0 . 1 2 3 1 0 0 0
AVGERR 40 0 . 3 0 6 7 5 0 0 0 . 2 4 4 1 5 6 2 0 . 0 2 0 0 0 0 0 0 . 9 4 0 0 0 0 0
STDERR 40 2 0 . 1 7 5 2 5 0 0 8 . 0 5 2 5 5 0 5 8 . 4 6 0 0 0 0 0 3 7 . 9 4 0 0 0 0 0

6 40 MADV 40 0 . 0 6 8 5 8 5 0 0 . 0 3 0 5 5 7 9 0 . 0 2 0 3 0 0 0 0 . 1 6 2 6 0 0 0
AVGERR 40 0 . 3 6 6 7 5 0 0 0 . 3 3 1 9 5 9 1 0 . 0 6 0 0 0 0 0 1 . 5 1 0 0 0 0 0
STDERR 40 1 9 . 9 5 8 5 0 0 0 6 . 5 6 3 1 9 5 6 8 . 1 1 0 0 0 0 0 2 9 . 6 0 0 0 0 0 0

7 40 MADV 40 0 . 0 6 0 1 6 0 0 0 . 0 3 1 4 3 1  1 0 . 0 1 8 8 0 0 0 0 .  1 5 1 5 0 0 0
AVGERR 40 0 . 2 1 2 2 5 0 0 0 . 2 5 4 0 4 9 1 0 1 . 0 7 0 0 0 0 0
STDERR 40 2 1 . 2 2 5 5 0 0 0 1 0 . 0 7 6 3 2 4 1 9 . 0 0 0 0 0 0 0 4 1 . 8 8 0 0 0 0 0

8 40 MADV 40 0 . 0 6 8 6 1 5 0 0 . 0 3 1 3 2 6 1 0 . 0 2 1 2 0 0 0 0 . 1 3 0 2 0 0 0
AVGERR 40 0 . 2 0 1 2 5 0 0 0 . 2 0 4 4 9 0 5 0 . 0 2 0 0 0 0 0 0 . 7 7 0 0 0 0 0
STDERR 40 2 3 . 8 3 4 5 0 0 0 8 . 8 6 5 8 2 8 9 9 . 4 2 0 0 0 0 0 3 8 . 1 1 0 0 0 0 0
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Table 33 cont.

(b) Factors: Medium Challenge Level by Network Size.

NETS 1Z E N Ob s V a r  i a b  l e N M e a n S t d  D e v Mi n i  mum M a x i  mum

1 4 0 MADV 4 0 0 . 0 2 8 8 1 2 5 0 . 0 1 9 0 3 0 0 0 . 0 0 7 7 0 0 0 0 . 0 7 6 6 0 0 0
AVGERR 4 0 0 . 5 1 2 2 5 0 0 0 . 5 0 0 6 7 9 0 0 . 0 2 0 0 0 0 0 1 . 8 0 0 0 0 0 0
STDERR 40 4 . 9 1 8 5 0 0 0 2 . 5 5 9 8 7 8 4 0 . 1 6 0 0 0 0 0 11 . 6 0 0 0 0 0 0

2 40 MAO V 4 0 0 . 0 6 5 8 9 5 0 0 . 0 4 4 1 3 3 8 0 . 0 2 2 8 0 0 0 0 .  1 7 2 6 0 0 0
AVGERR 4 0 1 . 0 3 7 5 0 0 0 1 . 0 3 9 2 1 2 6 0 . 0 6 0 0 0 0 0 4 . 2 4 0 0 0 0 0
STDERR 4 0 8 . 6 0 5 0 0 0 0 6 . 2 3 4 4 3 6 2 0 . 1 2 0 0 0 0 0 2 4 . 1 9 0 0 0 0 0

3 40 MADV 4 0 0 . 0 6 1 5 3 0 0 0 . 0 2 7 5 6 7 0 0 . 0 2 6 6 0 0 0 0 . 1 3 9 7 0 0 0
AVGERR 4 0 0 . 6 5 6 5 0 0 0 0 . 6 5 3 3 7 6 0 0 . 0 2 0 0 0 0 0 2 . 5 6 0 0 0 0 0
STDERR 4 0 1 5 . 8 5 3 0 0 0 0 6 . 2 2 0 1 1 2 2 0 . 5 1 0 0 0 0 0 2 5 . 2 6 0 0 0 0 0

4 4 0 MADV 4 0 0 . 0 7 1 5 2 7 5 0 . 0 2 9 8 4 4 1 0 . 0 2 2 6 0 0 0 0 . 1 3 3 6 0 0 0
AVGERR 4 0 0 . 9 6 5 2 5 0 0 0 . 7 3 5 3 7 3 6 0 . 1 4 0 0 0 0 0 2 . 8 0 0 0 0 0 0
STDERR 4 0 1 6 . 9 0 3 7 5 0 0 8 . 4 3 8 2 8 5 1 0 . 2 6 0 0 0 0 0 3 2 . 8 8 0 0 0 0 0

5 4 0 MADV 4 0 0 . 0 9 5 8 7 7 5 0 . 0 4 2 3 1 1 6 0 . 0 4 1 3 0 0 0 0 . 1 8 3 8 0 0 0
AVGERR 4 0 1 . 3 8 3 2 5 0 0 0 . 8 7 2 0 0 4 4 0 . 1 5 0 0 0 0 0 3 . 0 5 0 0 0 0 0
STDERR 4 0 1 7 . 6 2 7 0 0 0 0 9 . 0 3 9 7 6 9 2 0 . 0 7 0 0 0 0 0 3 7 . 0 4 0 0 0 0 0

6 4 0 MADV 4 0 0 . 0 7 2 0 0 7 5 0 . 0 2 3 5 4 1  1 0 . 0 4 1 6 0 0 0 0 . 1 1 8 6 0 0 0
AVGERR 4 0 0 . 8 3 9 2 5 0 0 0 . 5 4 9 2 0 6 4 0 . 0 2 0 0 0 0 0 2 . 5 4 0 0 0 0 0
STDERR 4 0 2 0 . 6 8 7 5 0 0 0 7 . 4 2 7 4 6 3 5 7 . 8 5 0 0 0 0 0 3 8 . 0 3 0 0 0 0 0

7 40 MADV 4 0 0 . 0 9 6 6 3 5 0 0 . 0 5 9 0 8 3 6 0 . 0 3 6 5 0 0 0 0 . 2 6 9 0 0 0 0
AVGERR 4 0 1 . 1 1 2 2 5 0 0 1 . 1 4 0 7 7 9 1 0 . 0 2 0 0 0 0 0 4 . 5 0 0 0 0 0 0
STDERR 4 0 2 2 . 0 3 3 2 5 0 0 6 . 4 8 7 7 9 4 2 1 1 . 4 5 0 0 0 0 0 3 2 . 9 6 0 0 0 0 0

8 40 MADV 4 0 0 . 1 2 3 2 7 2 5 0 . 0 5 4 9 6 9 1 0 . 0 3 9 1 0 0 0 0 . 2 3 6 8 0 0 0
AVGERR 4 0 1 . 5 8 1 0 0 0 0 1 . 1 5 2 1 1 0 2 0 . 0 3 0 0 0 0 0 4 .  1 0 0 0 0 0 0
STDERR 4 0 2 5 . 0 4 7 0 0 0 0 7 . 9 7 0 2 6 0 2 1 2 . 9 8 0 0 0 0 0 4 0 . 9 8 0 0 0 0 0
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Table 33 cont.

(c) Factors: High Challenge Level by Network Size.

NET SI Z E N Obs V a r i a b l e N M e a n S t  d  D e v M i n i  mum Max i mum

1 40 MADV 4 0 0 . 0 9 3 7 2 7 5 0 . 0 5 0 5 6 6 7 0 . 0 1 9 6 0 0 0 0 .  1 9 4 1 0 0 0
AVGERR 4 0 4 . 2 5 0 5 0 0 0 3 . 0 5 5 9 0 4 7 0 . 2 8 0 0 0 0 0 1 0 . 9 3 0 0 0 0 0
STDERR 4 0 6 . 9 8 9 5 0 0 0 4 . 6 5 9 0 6 8 3 0 . 1 6 0 0 0 0 0 1 6 . 1 7 0 0 0 0 0

2 40 MADV 4 0 0 .  1 5 4 0 9 0 0 0 . 0 7 5 3 7 3 9 0 . 0 4 0 5 0 0 0 0 . 3 1 9 4 0 0 0
AVGERR 4 0 6 . 2 0 3 5 0 0 0 3 . 7 7 3 9 6 2 4 0 . 2 2 0 0 0 0 0 1 4 . 0 3 0 0 0 0 0
STDERR 4 0 1 6 . 3 4 7 0 0 0 0 1 0 . 3 2 7 8 2 2 6 0 . 8 7 0 0 0 0 0 4 3 . 5 6 0 0 0 0 0

3 40 MADV 4 0 0 .  1 4 1 6 4 5 0 0 . 0 6 0 5 5 5 4 0 . 0 5 9 4 0 0 0 0 . 2 5 5 8 0 0 0
AVGERR 4 0 5 . 0 7 1 2 5 0 0 2 . 7 2 4 0 2 4 3 0 . 1 7 0 0 0 0 0 9 . 9 5 0 0 0 0 0
STDERR 4 0 21 . 8 1 5 5 0 0 0 1 3 . 0 2 5 5 1 3 6 3 . 1 1 0 0 0 0 0 5 4 . 5 7 0 0 0 0 0

4 40 MADV 4 0 0 . 1 5 5 5 6 0 0 0 . 0 6 5 5 8 3 9 0 . 0 3 2 6 0 0 0 0 . 2 8 8 7 0 0 0
AVGERR 4 0 5 . 2 4 2 5 0 0 0 3 . 1 8 7 0 1 1 9 0 . 3 7 0 0 0 0 0 1 1 . 1 6 0 0 0 0 0
STDERR 4 0 3 0 . 4 4 3 5 0 0 0 1 3 . 5 4 2 1 6 1 4 9 . 1 5 0 0 0 0 0 5 9 . 9 4 0 0 0 0 0

5 4 0 MADV 4 0 0 .  1 9 3 4 7 2 5 0 . 0 6 8 6 1 8 7 0 . 0 5 6 6 0 0 0 0 . 3 6 1 0 0 0 0
AVGERR 4 0 6 . 3 3 9 0 0 0 0 3 . 1 5 2 7 3 9 8 0 . 2 1 0 0 0 0 0 1 2 . 6 2 0 0 0 0 0
STDERR 4 0 2 7 . 2 6 9 5 0 0 0 1 2 . 6 8 6 3 5 4 9 3 . 1 3 0 0 0 0 0 5 0 . 9 2 0 0 0 0 0

6 4 0 MADV 4 0 0 .  1 4 9 6 3 7 5 0 . 0 5 4 9 4 0 2 0 . 0 7 2 2 0 0 0 0 . 2 5 9 3 0 0 0
AVGERR 4 0 4 . 4 6 1 0 0 0 0 2 . 8 4 5 2 5 7 7 0 . 0 4 0 0 0 0 0 1 0 . 8 3 0 0 0 0 0
STDERR 4 0 3 6 . 4 2 1 7 5 0 0 1 8 . 1 3 2 4 8 6 3 1 2 . 5 7 0 0 0 0 0 8 8 . 7 5 0 0 0 0 0

7 4 0 MADV 4 0 0 . 2 1 5 3 4 7 5 0 . 0 7 8 3 7 9 5 0 . 0 7 0 6 0 0 0 0 . 3 8 5 3 0 0 0
AVGERR 4 0 7 . 1 8 7 0 0 0 0 4 . 0 2 4 6 5 0 5 0 . 5 9 0 0 0 0 0 1 7 . 4 1 0 0 0 0 0
STDERR 4 0 31 . 6 7 1 2 5 0 0 1 5 . 4 3 6 7 0 2 2 9 . 8 1 0 0 0 0 0 7 2 . 1 7 0 0 0 0 0

8 4 0 MADV 4 0 0 . 2 6 2 9 0 5 0 0 . 1 1 4 7 6 8 1 0 . 1 1 1 0 0 0 0 0 . 5 0 9 4 0 0 0
AVGERR 4 0 8 . 2 0 9 2 5 0 0 4 . 7 6 0 3 7 7 3 1 . 2 7 0 0 0 0 0 1 8 . 4 0 0 0 0 0 0
ST0ERR 4 0 3 5 . 0 5 1 7 5 0 0 1 6 . 0 8 7 5 3 8 7 5 . 6 8 0 0 0 0 0 6 2 . 5 6 0 0 0 0 0
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special consideration for the presence of any exponential distributions. If the number of 

classes for polygonal approximation is increased, errors build up at a  slower rate, so the 

performance of PART algorithms would be improved compared to  the results of the 

validation experiments. Nonetheless, the results of the validation experiments were 

comparable to previously reported results (Tables 23 an 24) except at the upper end of the 

experimental cases: networks with 50 or more nodes and 75 or more activities, coupled 

with the high challenge factor level distributions; only there were some MADVs 

experienced which were statistically significant at the 5% level. The validation experiments 

demonstrated the following properties of PART algorithm performance:

(1) The performance of the PART-ind and PART-seq algorithms is virtually 

identical, as expected.

(2) The accuracy of PART algorithms to approximate the throughput 

distribution of a stochastic activity network is a function o f both 

network size and structure and how challenging the activity duration 

distributions are to polygonal approximation-based series-parallel 

reduction operations, and there is a weak interaction between these two 

factors.

(3) Lack-of-fit of the approximated throughput distribution and error in the 

approximation of the mean increase slowly, almost monotonically with 

increasing network size and structure and challenge of the activity 

distributions.

(4) Error in approximation of the standard deviation of the throughput 

distribution also increases slowly, almost monotonically with increasing 

network size and structure, but is more sensitive to how “high” the 

variances of activity distributions are and how much overlap there is 

among their domains.
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4.4 PART Algorithm Performance Based on Activity, Node, and Path Criticality

In this section, validation of a PART algorithm for identifying the K  most 

stochastically dominating paths for large network approximation and reduction is 

discussed. Since the topic of identifying the K  most critical paths in a stochastic activity 

network has received little attention in the literature, there is only limited reported 

experience in testing large-network algorithms upon which to draw. Dodin (1984) 

proposed an approach: approximating the K  most critical paths with the K  most 

stochastically dominating paths, obtained from a heuristic based on the sequential 

approximation method, with which he reported preliminary computational experience 

(Section 2.8.2 [above]). Validation of the PART algorithm was patterned after Dodin’s 

testing of the heuristic, extended to include the broad elements of the experimental design 

for algorithm testing (Section 3.5.1 [above]). The PART algorithm approximates activity 

criticality, normalized activity criticality, node criticality, and normalized node criticality 

indices, in addition to identifying the K most stochastically dominating paths (Section

3.4.2 [above]). For all the test networks against which the algorithm was exercised, the 

simulation-approximated criticality indices from extensive Monte Carlo simulations of these 

networks (Section 3.5.3 [above]) were taken as the “true” values of these indices, since the 

actual indices cannot be obtained. From these simulations, the K  most critical paths were 

obtained from the rankings of the averaged simulation-approximated activity criticality 

indices CA of the activities on each path, as the value of the simulation-approximated path 

criticality index CR of the path. While these results were taken as the “true” K  most 

critical paths, it must be recognized that they may not be exact, since the averages of 

simulation-approximated CA s of activities on paths which contain common arcs are non- 

uniformly inflated relative to the averages of simulation-approximated CAs of activities on 

paths which contain no common arcs or whose common arcs have CA s equal to zero, and 

this inflation can alter the ranking of the paths. However, in large networks the relative
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Figure 50. PART-paths program input (control data file).

ranking of paths based on averaged simulation-approximated CA s of activities on paths 

should not change compared to the ranking which could be obtained from path 

enumeration, except under unusual circumstances (Section 3.5.3 [above]). Example data 

inputs and outputs for the programs included in Appendices C and F are included here.

4.4.1 Performance Against Selected Test Networks

Since Dodin (1984) is the only researcher who has reported test results for tf-most- 

critical-paths approximation, the only test networks discussed in the literature are those 

which were used in his tests. These networks, which were randomly generated, are 

discussed in the next section. Consequently, to verify the PART algorithm for identifying 

the K  most stochastically dominating paths (labeled PART-paths), a  small set of small

sized networks which could be manually reduced was tested by comparing the K most 

critical paths obtained by manual reduction with the K  most stochastically dominating 

paths obtained from the PART-paths algorithm. As an example, one of these networks, the 

“conditional” network in Figure 42 (Section 4.3 [above]), is discussed here. This network 

has seven nodes and ten activities, and there are five paths through the network from 

source to sink. CPM analysis of the network ranks the five paths as follows:

Rank 1: 1—2 —5—7
Rank 2: l-* 4 —6 —7
Rank 3: 1-*3—6 —7
Rank 4: 1—3 —5 —7
Rank 5: 1—4 —7

and it is easily verified that this is the “true” ranking of the critical paths.

Figure 50 shows the control data input file (CONTROL.PATHS) for the PART-paths 

program; the network data file (DATAN.PATHS) is the same as the DATAN.DAT file in
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Part (b) of Figure 43, and the activity duration distributions data file (DATAH.PATHS) is 

the same as the DATAH.DAT file in Part (c) of Figure 43. The formats of these files are 

described in comment statements at the top of the code listing in Appendix C. Figure 51 

depicts the output from the PART-paths program, which includes the approximated activity 

criticality, normalized activity criticality, node criticality, and normalized node criticality 

indices, and the K most stochastically dominating paths through the network. The activity 

criticality and normalized activity criticality indices are presented backward through the 

network from the sink node, as predecessor activities of their respective end nodes, in the 

order in which they are computed (Section 3.4.2 [above]). The node criticality and 

normalized criticality indices are presented below the activity indices, since their 

computation depends on the values of the activity indices. The node criticality and 

normalized node criticality indices of the source node and the sink node are always equal to 

one, since all critical paths depart from the source node and terminate at the sink node. In 

the PART-paths program, the node criticality indices are normalized by the scale factor 

necessary to make the normalized node criticality index of the sink node equal to exactly 

one. If the normalized node criticality index of the source node is not exactly equal to one, 

the difference reflects built-up error from polygonal approximation.

Up to the top five most stochastically dominating paths may be requested from the 

PART-paths program, since the heuristic can not only be used to identify the most critical 

path, but in networks with low densities, the second, third,..., and critical paths. In 

dense networks it can only be used to approximate the set of the K  most critical paths 

without consideration of the path’s rank in the set (Section 2.8.2 [above]). For the 

“conditional” network, the five most stochastically dominating paths obtained from the 

heuristic implemented with polygonal approximation were identical to the five critical paths 

obtained manually. Although the K paths identified by the heuristic are, in most cases, the 

K  most critical paths, there are counterinstances where this does not hold (Dodin, 1984).
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FROM THE POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE:
THE ACTIVITIES ENDING AT NODE 7 AND THEIR CRITICALITY INDICES ARE:

N O R M A L IZ E D
STARTING CRITICALITY CRITICALITY 

NODE INDEX INDEX
4 .00000 .00000
5 .77696 .77706
6 .22291 .22294

THE ACTIVITIES ENDING AT NODE 6 AND THEIR CRITICALITY INDICES ARE:
N O R M A L IZ E D

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

3 .02026 .02027
4 .20777 .20779

THE ACTIVITIES ENDING AT NODE 5 AND THEIR CRITICALITY INDICES ARE:
N O R M A L IZ E D

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

2 .77230 .77240
3 .00331 .00331

THE ACTIVITIES ENDING AT NODE 4 AND THEIR CRITICALITY INDICES ARE:
N O R M A L IZ E D

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .20777 .20779

THE ACTIVITIES ENDING AT NODE 3 AND THEIR CRITICALITY INDICES ARE:
N O R M A L IZ E D

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .02358 .02358

THE ACTIVITIES ENDING AT NODE 2 AND THEIR CRITICALITY INDICES ARE:
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .77230 .77240

THE CRITICALITY INDICES OF THE NODES ARE:
NORMALIZED 

CRITICALITY CRITICALITY
NODE INDEX INDEX

1 1.00365 1.00378
2 .77230 .77240
3 .02358 .02358
4 .20777 .20779
5 .77696 .77706
6 .22291 .22294
7 .99987 1.00000
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THE 5 MOST STOCHASTICALLY DOMINATING PATHS THROUGH THE NETWORK ARE
THE RANK 1 PATH WITH 4 NODES:

1 2  5 7

THE RANK 2 PATH WITH 4 NODES:
1 4  6 7

THE RANK 3 PATH WITH 4 NODES:
1 3  6 7

THE RANK 4 PATH WITH 4 NODES:
1 3  5 7

THE RANK 5 PATH WITH 3 NODES:
1 4  7

Figure 51. PART-paths program output.
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4.4.2 Performance Against Reported Performance of Competing Procedures

Dodin (1984) is the only researcher who has reported performance results for a 

competing approximation procedure implementing the heuristic: discretization 

approximation. In a performance analysis conducted when he originally proposed the 

heuristic, he applied it to 14 “strongly random” networks to identify the three most 

stochastically dominating paths, and he simulated the networks to identify the three most 

critical paths. In each network, the pdf’s in Table 10 (in Section 2.8.2 [above]) were used 

equally. The accuracy of the heuristic was measured by the closeness between the set of 

stochastically dominating paths, identified by the procedure implemented with discretization 

approximation, and the set of corresponding critical paths, identified by the simulation. 

Table 11 shows the sizes of the test networks and the closeness between the set of 

stochastically dominating paths and the set of critical paths. A performance measure entry 

of “ 1” indicates that the stochastically dominating path was identical to the 

corresponding critical path, whereas an entry of “0” indicates that the two paths were not 

the same, but differed by at least one arc. Dodin observed that most of the nonmatching 

paths occurred in networks with arc to node densities higher than two, which he attributed 

to the large number of paths in dense networks with similar or close durations. For the 14 

networks tested, he reported that the three most critical (or stochastically dominating) paths 

had many arcs in common, i.e., many of the arcs of the most critical (stochastically 

dominating) paths were constituents of the other critical (stochastically dominating) paths.

As is the case for his reported performance analysis of a sequential approximation 

algorithm for approximating network throughput distribution, Dodin’s results of the 

performance of the heuristic implemented with discretization approximation were reported 

for a single “randomly generated network” tested with a particular network size and 

assignment of activity distributions. In each case, only one network was tested because the 

network’s critical paths had to be obtained through exhaustive enumeration by simulation,
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which required extensive computational resources. However, since only one network was 

tested for each case considered, the results are without value to the characterization of the 

performance of the approximation algorithm implementing the heuristic. Again, it is not 

possible to compare directly the reported performance of the heuristic implemented with 

discretization approximation with the performance of polygonal approximation.

4.4.3 Performance Against Test Networks Constructed within an Experimental Design 

Again following the experimental design for algorithm testing (Section 3.5.1 [above]), 

a series of validation experiments was conducted for the PART-paths algorithm based on 

how great a challenge a randomly constructed test network presented to the algorithm. 

Since the performance of the heuristic implemented with polygonal approximation is 

reflected in the closeness between the sets of the K  most stochastically dominating paths 

and the K  most critical paths - here obtained from the rankings of the averaged simulation- 

approximated activity criticality indices - in order to effectively describe the performance in 

quantitative terms, a better performance measure was needed than Dodin’s “ l ”s and “0”s. 

Based on the degree of matching between the first most stochastically dominant path and 

the first most critical path, the seconds, etc., as reported by Dodin, a “matching category” 

performance measure was constructed, with three categories, based on the nodes of a path:

1. “All”: all the nodes in the K ^  most stochastically 
dominant path match the nodes in the most critical 
path.

2. “ 1-4”: the number of mismatches between the nodes in 
the most stochastically dominant path and the nodes 
in the AT1*1 most critical path is between one and four.

3. ”>4”: the number of mismatches between the nodes in 
the AT1*1 most stochastically dominant path and the nodes 
in the K ^ 1 most critical path is greater than four.

Since this “matching category” performance measure is a categorical variable, not a

numerically valued variable, a traditional ANOVA experimental design could not be
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Figure 52. PART-paths(val) program input (control data file).

employed. As in the validation of the PART-ind and PART-seq algorithms, two design 

factors were of interest: network size and structure, measured by the number of nodes and 

number of activities in a network; and challenge of the probability distribution functions of 

activity duration. To effect as reasonable and meaningful comparison as possible with 

Dodin’s reported results, the 14 network sizes in Table 11 were used, although both the 

number of nodes and the number of activities could have been randomly generated (Section

3.5.1 [above]). The three sets of activity duration distributions with the high, medium, and 

low challenge-factor levels were again used, along with the distributions in Table 10. The 

three most stochastically dominant paths were identified and compared with the three most 

critical paths obtained from the rankings of the averaged simulation-approximated activity 

criticality indices. The “matching category” variable value was developed for each path for 

each network tested, so that the performance of the heuristic implemented by polygonal 

approximation could be described by its matching characteristics based on the path number. 

Additionally, the combined set of nodes in the three most stochastically dominant paths and 

the combined set of nodes in the three most critical paths were developed and compared. 

As similar results were experienced for all the experiments, only one is discussed in detail 

here - the experiment based on Dodin’s reported results.

The test networks were generated and then the heuristic applied to them by the PART- 

paths validation program [labeled PART-paths(val)]. Figure 52 shows the control data 

input file (CONTROL.PATHS-RNETGEN) for the PART-paths(val) program; the activity 

duration distributions data file (DATAH.PATHS-RNETGEN) is the same as the 

DATAH.DAT file in Part (c) of Figure 43. The formats for these files are described in 

comment statements at the top of the code listing in Appendix F. Figure 53 depicts the
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output from the PART-paths(val) program for the first network from the set of 20 “strongly 

random” networks generated and tested with 20 nodes and 60 activities. The output 

includes the approximated activity criticality, normalized activity criticality, node criticality, 

and normalized criticality indices obtained from the heuristic implemented with polygonal 

approximation and from simulation (Section 3.5.3 [above]), a comparison table of the 

activity criticality indices, the K most stochastically dominating paths obtained from the 

heuristic implemented with polygonal approximation, the K  most critical paths obtained 

from the rankings of the averaged simulation-approximated activity criticality indices, and a 

comparison table of the two path sets which shows the number of nodes in common in 

each path pair. Table 34 presents the values of the “matching category” performance 

measure for the pairwise comparisons between the sets of nodes of the first, second, and 

third most stochastically dominant paths and the sets of nodes of the first, second, and third 

most critical paths for the first network from the set of 20 networks generated and tested for 

each of the 14 different network sizes.

Taken collectively across the 20 networks generated and tested, the results of the 

“matching category” performance measure were as follows. For the first path, “all” nodes 

matched between the set of stochastically dominant paths and the set of critical paths for 

86% of the comparisons, there were “1-4” node mismatches for 12% of the comparisons, 

and there were “>4” node mismatches for 2% of the comparisons. For the second path, 

“all” was 26%, and “ 1-4” was 74%. For the third path, “all” was 19%, “ 1-4” was 79%, 

and “>4” was 2%. The “matching category” values of “ 1-4” and “>4”, however, constitute 

a “Heisenberg uncertainty”-like area; because the K  most critical paths obtained from the 

rankings o f the averaged simulation-approximated activity criticality indices may not be 

exact, it is not possible to ascribe the cause of any node mismatch necessarily to either error 

from polygonal approximation or error from critical path determination. To isolate error 

from only polygonal approximation, critical paths must be obtained through exhaustive
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THE RESULTS FOR NETWORK NUMBER 1 OF 20 NETWORKS GENERATED ARE:

FROM THE POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE t

THE A CTIV ITIES ENDING AT NODE 20 AND THEIR CRITICALITY INDICES ARE:
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

2 .00000  .00000
1 0  .0 0 0 9 1  .0 0 0 9 0
1 1  .0 0 0 2 5  .0 0 0 2 5
18  .3 9 8 9 5  .3 9 6 6 8
1 9  .6 0 5 6 1  .6 0 2 1 7

THE A CTIV ITIES ENDING AT NODE 19 AND THEIR CRITICALITY INDICES ARE:
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

1 .0 0 0 0 0 .0 0 0 0 0
7 .0 0 0 2 6 .0 0 0 2 6
9 .0 0 0 0 0 .0 0 0 0 0

12 .0 3 0 0 0 .0 2 9 8 3
13 .0 2 4 4 0 .0 2 4 2 6
14 .2 2 5 2 0 .2 2 3 9 2
15 .3 1 4 6 2 .3 1 2 8 3
16 .1 5 8 0 6 .1 5 7 1 6
17 .0 4 4 5 4 .0 4 4 2 9

THE A CTIVITIES ENDING AT NODE 18 AND THEIR CRITICALITY INDICES ARE I
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

2 .0 0 0 0 0 .0 0 0 0 0
5 .0 0 0 0 1 .0 0 0 0 1
6 .0 0 0 0 0 .0 0 0 0 0
8 .0 0 2 0 5 .00204

1 0 .0 0 5 1 7 .00514
15 .3 0 0 6 7 .29895
16 .1 4 4 0 0 .1 4 3 1 8
17 .0 4 6 1 7 .0 4 5 9 1

THE A CTIV ITIES ENDING AT NODE 17 AND THEIR CRITICALITY INDICES AREi
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

2 .00001  .00001
3 .0 0 0 0 1  .0 0 0 0 1

1 1  .0 0 6 5 5  .0 0 6 5 1
1 3  .0 5 9 7 5  .0 5 9 4 1

THE A CTIV ITIES ENDING AT NODE 16 AND THEIR CRITICALITY INDICES ARE:
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

2 .0 0 0 1 4  .00014
13  .3 0 6 5 4  .3 0 4 8 0
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THE ACTIVITIES ENDING AT NODE IS  AND THEIR CRITICALITY INDICES AREi
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .0 0 0 1 9  .0 0 0 1 9
14 .6 9 4 9 9  .6 9 1 0 4

THE ACTIVITIES ENDING AT NODE 14 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

13 .9 2 0 1 9  .9 1 4 9 5

THE ACTIVITIES ENDING AT NODE 13 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

1 .0 0 2 9 1  .0 0 2 8 9
2 .0 1 4 0 5  .0 1 3 9 7
4 .0 2 6 9 6  .0 2 6 8 0

11 .3 9 0 3 6  .38814
12 .6 0 7 1 6  .6 0 3 7 1

THE ACTIVITIES ENDING AT NODE 12 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

1 .0 1 1 7 4  .0 1 1 6 7
3 .0 1 6 8 7  .0 1 6 7 7
5 .0 8 0 0 5  .0 7 9 6 0

10 .6 0 1 3 5  .5 9 7 9 3

THE ACTIVITIES ENDING AT NODE 11 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY
NODE INDEX INDEX

2 .0 6 2 2 3  .0 6 1 8 7
3 . 0 5 1 5 1  .05  122
4 .1 7 7 3 1  .1 7 6 3 1
5 .1 9 1 9 8  .1 9 0 8 9
6 .0 9 5 7 3  .0 9 5 1 9
8 .3 2 7 1 1  .3 2 5 2 5

THE ACTIVITIES ENDING AT NODE 10 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

3 . 04  102 .  04 079
7 .3 5 2 6 3  .3 5 0 6 2
8 .4 1 3 4 3  .4 1 1 0 8

THE ACTIVITIES ENDING AT NODE 9 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

3 .0 0 0 0 0  .0 0 0 0 0
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THE ACTIVITIES ENDING AT NODE 8 AND THEIR CRITICALITY INDICES AREi
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

2 .0 6 5 1 9  .0 6 4 8 2
5 .1 6 9 5 2  .1 6 8 5 6
7 .2 2 1 4 4  .2 2 0 1 8

THE ACTIVITIES ENDING AT NODE 7 AND THEIR CRITICALITY INDICES ARE!
NORMALIZED 

STARTING CRITICALITY CRITICALITY '
NODE INDEX INDEX

2 .1 5 2 2 4  .1 5 1 3 7
6 .2 2 7 7 9  .2 2 6 4 9

THE ACTIVITIES ENDING AT NODE 6 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

3 .3 2 3 5 2  .3 2 1 6 8

THE ACTIVITIES ENDING AT NODE 5 AND THEIR CRITICALITY INDICES ARE:
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

2 .4 4 1 5 8  .4 3 9 0 6

THE ACTIVITIES ENDING AT NODE 4 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

3 .2 0 4 2 7  .2 0 3 1 1

THE ACTIVITIES ENDING AT NODE 3 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .6 3 7 2 0  .6 3 3 5 8

THE ACTIVITIES ENDING AT NODE 2 AND THEIR CRITICALITY INDICES AREs
NORMALIZED

STARTING CRITICALITY CRITICALITY 
NODE INDEX INDEX

1 .7 3 5 4 3  .7 3 1 2 4
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THE CRITICALITY INDICES OF THE NODES ARE I
NORMALIZED 

CRITICALITY CRITICALITY
NODE INDEX INDEX

1 1 .3 8 7 4 7 1 .3 7 9 5 8
2 .7 3 5 4 3 .7 3 1 2 4
3 .6 3 7 2 0 .6 3 3 5 8
4 .2 0 4 2 7 .2 0 3 1 1
5 .4 4 1 5 8 .4 3 9 0 6
6 .3 2 3 5 2 .3 2 1 6 8
7 .5 7 4 3 3 .5 7 1 0 6
8 .7 4 2 6 0 .7 3 8 3 8
9 .0 0 0 0 0 .0 0 0 0 0

10 .6 0 7 4 2 .6 0 3 9 7
11 .3 9 7 1 7 .3 9 4 9 1
12 .6 3 7 1 6 .6 3 3 5 4
13 1 .3 1 0 8 8 1 .3 0 3 4 2
14 .9 2 0 1 9 .9 1 4 9 5
15 .6 1 5 2 9 .6 1 1 7 9
16 .3 0 2 0 6 .3 0 0 3 5
17 .0 9 0 7 1 .0 9 0 1 9
18 .3 9 8 9 5 .3 9 6 6 8
19 .6 0 5 6 1 .6 0 2 1 7
20 1 .0 0 5 7 2 1 .0 0 0 0 0
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FROM MONTE CARLO SIMULATION:
THE A CTIV ITIES ENDING AT NODE 20 AND THEIR CRITICALITY INDICES ARE:

NO. TIMES ON NORMALIZED
STARTING A CRITICAL CRITICALITY CRITICALITY

NODE PATH INDEX INDEX
2 0 .0 0 0 0 0 .0 0 0 0 0

10 0 .0 0 0 0 0 .0 0 0 0 0
11 0 .0 0 0 0 0 .0 0 0 0 0
18 4708 .4 7 0 8 0 .4 6 7 3 4
19 5366 .5 3 6 6 0 .5 3 2 6 6

THE A CTIV ITIES ENDING AT NODE 19 AND THEIR CRITICALITY
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

1 0 .0 0 0 0 0 .0 0 0 0 0
7 0 .0 0 0 0 0 .0 0 0 0 0
9 0 .0 0 0 0 0 .0 0 0 0 0

12 1 .0 0 0 1 0 .0 0 0 1 0
13 0 .0 0 0 0 0 .0 0 0 0 0
14 1159 .1 1 5 9 0 .1 1 5 0 5
15 3552 .3 5 5 2 0 .3 5 2 5 9
16 643 .0 6 4 3 0 .0 6 3 8 3
17 11 .0 0 1 1 0 .0 0 1 0 9

THE ACTIVITIES ENDING AT NODE 18 AND THEIR CRITICALITY
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

2 0 .0 0 0 0 0 .0 0 0 0 0
5 0 .0 0 0 0 0 .0 0 0 0 0
6 0 .0 0 0 0 0 .0 0 0 0 0
8 0 .0 0 0 0 0 .0 0 0 0 0

10 0 .0 0 0 0 0 .0 0 0 0 0
15 3962 .3 9 6 2 0 .3 9 3 2 9
16 735 .0 7 3 5 0 .0 7 2 9 6
17 11 .0 0 1 1 0 .0 0 1 0 9

THE A CTIV ITIES ENDING AT NODE 17 AND THEIR CRITICALITY
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

2 0 .0 0 0 0 0 .0 0 0 0 0
3 0 .0 0 0 0 0 .0 0 0 0 0

11 2 .0 0 0 2 0 .0 0 0 2 0
13 20 .0 0 2 0 0 .0 0 1 9 9

THE A CTIV ITIES ENDING AT NODE 16 AND THEIR CRITICALITY
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

2 0 .0 0 0 0 0 .0 0 0 0 0
13 1378 .1 3 7 8 0 .1 3 6 7 9

THE A CTIV ITIES ENDING AT NODE 15 AND THEIR CRITICALITY
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

1 0 .0 0 0 0 0 .0 0 0 0 0
14 7514 .7 5 1 4 0 .7 4 5 8 8
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THE A CTIV ITIES ENDING AT NODE 14 AMD THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

13 8673 .8 6 7 3 0  .8 6 0 9 3

THE A CTIV ITIES ENDING AT NODE 13 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

1 0 .00000  .00000
2 0 .00000  .00000
4 4 .0 0 0 4 0  .0 0 0 4 0

11 3157 .3 1 5 7 0  .3 1 3 3 8
12 6910 .6 9 1 0 0  .6 8 5 9 2

THE A CTIVITIES ENDING AT NODE 12 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

1 0 .00000  .00000
3 0 .0 0 0 0 0  .0 0 0 0 0
5 59 .0 0 5 9 0  .0 0 5 8 6

10 6852 .6 8 5 2 0  .6 8 0 1 7

THE ACTIVITIES ENDING AT NODE 11 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY
NODE PATH INDEX INDEX

2 0 .00000  .00000
3 0 .0 0 0 0 0  .0 0 0 0 0
4 602 .0 6 0 2 0  .0 5 9 7 6
5 542 .0 5 4 2 0  .0 5 3 8 0
6  10 .0 0 1 0 0  .0 0 0 9 9
8 2005 .2 0 0 5 0  .1 9 9 0 3

THE A CTIVITIES ENDING AT NODE 10 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

3 0 .0 0 0 0 0  .0 0 0 0 0
7 4366 .4 3 6 6 0  .4 3 3 3 9
8  2486 .2 4 8 6 0  .2 4 6 7 7

THE ACTIVITIES ENDING AT NODE 9 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

3  0 .0 0 0 0 0  .0 0 0 0 0

THE ACTIVITIES ENDING AT NODE 8 AND THEIR CRITICALITY INDICES AREs 
NO. TIMES C« NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

2 46 .0 0 4 6 0  .0 0 4 5 7
5  1792 .1 7 9 2 0  .1 7 7 8 8
7 2653 .2 6 5 3 0  .2 6 3 3 5
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THE ACTIVITIES ENDING AT NODE 7 AND THEIR CRITICALITY INDICES AREi 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

2 1197 .1 1 9 7 0  .1 1 8 8 2
6 5822 .5 8 2 2 0  .5 7 7 9 2

THE ACTIVITIES ENDING AT NODE 6 AND THEIR CRITICALITY INDICES AREi 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

3 5832 .5 8 3 2 0  .5 7 8 9 2

THE ACTIVITIES ENDING AT NODE 5 AND THEIR CRITICALITY INDICES AREi 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

2 2393  .2 3 9 3 0  .2 3 7 5 4

THE ACTIVITIES ENDING AT NODE 4 AND THEIR CRITICALITY INDICES AREi 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

3 606 .0 6 0 6 0  .0 6 0 1 5

THE ACTIVITIES ENDING AT NODE 3 AND THEIR CRITICALITY INDICES AREi 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

1 6438 .6 4 3 8 0  .6 3 9 0 7

THE ACTIVITIES ENDING AT NODE 2 AND THEIR CRITICALITY INDICES ARE I 
NO. TIMES ON NORMALIZED

STARTING A CRITICAL CRITICALITY CRITICALITY 
NODE PATH INDEX INDEX

1 3636 .3 6 3 6 0  .3 6 0 9 3

THE CRITICALITY INDICES OF THE NODES AREi 
NORMALIZED 

CRITICALITY CRITICALITY
NODE INDEX INDEX

1 1 .0 0 7 4 0 1 .0 0 0 0 0
2 .3 6 3 6 0 .3 6 0 9 3
3 .6 4 3 8 0 .6 3 9 0 7
4 .0 6 0 6 0 .0 6 0 1 5
5 .2 3 9 3 0 .2 3 7 5 4
6 .5 8 3 2 0 .5 7 8 9 2
7 .7 0 1 9 0 .6 9 6 7 4
8 .4 4 9 1 0 .4 4 5 8 0
9 .0 0 0 0 0 .0 0 0 0 0

10 .6 8 5 2 0 .6 8 0 1 7
11 .3 1 5 9 0 .3 1 3 5 8
12 .6 9 1 1 0 .6 8 6 0 2
13 1 .0 0 7 1 0 .9 9 9 7 0
14 .8 6 7 3 0 .8 6 0 9 3
15 .7 5 1 4 0 .7 4 5 8 8
16 .1 3 7 8 0 .1 3 6 7 9
17 .0 0 2 2 0 .0 0 2 1 8
18 .4 7 0 8 0 .4 6 7 3 4
19 .5 3 6 6 0 .5 3 2 6 6
20 1 .0 0 7 4 0 1 .0 0 0 0 0
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COMPARISONS OF ACTIVITY CRITICALITY INDICES I

NORM. NORM. NO. ACTS. NO. ACTS. RELATIVE
C R IT . CRIT. C R IT . C R IT . 1 ^  ̂ G8EA3ER ERROR

START END INDEX INDEX INDEX INDEX CRIT. IN . C R IT . IN . OF NORM.
NODE NODE (A P P R .) (S IM .) (A P P R .) ( S I M .) (A PPR .) ( S IM .) C R IT . INDEX

2 20 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 57 36 UNDEFINED
10 20 .0 0 0 9 1 .00000 .0 0 0 9 0 .0 0 0 0 0 46 36 UNDEFINED
11 20 .0 0 0 2 5 .00000 .0 0 0 2 5 .0 0 0 0 0 48 36 UNDEFINED
18 20 .3 9 8 9 5 .47080 .3 9 6 6 8 .4 6 7 3 4 9 8 -1 5 .1 2 %
19 20 .6 0 5 6 1 .53660 .6 0 2 1 7 .5 3 2 6 6 5 7 13 .05%

1 19 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 57 36 UNDEFINED
7 19 .0 0 0 2 6 .00000 .0 0 0 2 6 .0 0 0 0 0 47 36 UNDEFINED
9 19 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 54 36 UNDEFINED

12 19 .0 3 0 0 0 .00010 .0 2 9 8 3 .0 0 0 1 0 36 35 **»•***%
13 19 .0 2 4 4 0 .00000 .0 2 4 2 6 .0 0 0 0 0 38 36 UNDEFINED
14 19 .2 2 5 2 0 .11590 .2 2 3 9 2 .1 1 5 0 5 18 21 94 .63%
15 19 .3 1 4 6 2 .35520 .3 1 2 8 3 .3 5 2 5 9 14 12 -1 1 .2 8 %
16 19 .1 5 8 0 6 .06430 .1 5 7 1 6 .0 6 3 8 3 24 23 1 4 6 .23%
17 19 .0 4 4 5 4 .00110 .0 4 4 2 9 .0 0 1 0 9 34 30 3 9 5 5 .9 6 %

2 18 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 57 36 UNDEFINED
5 18 .0 0 0 0 1 .00000 .0 0 0 0 1 .0 0 0 0 0 51 36 UNDEFINED
6 18 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 54 36 UNDEFINED
8 18 .0 0 2 0 5 .00000 .0 0 2 0 4 .0 0 0 0 0 45 36 UNDEFINED

10 18 .0 0 5 1 7 .00000 .0 0 5 1 4 .0 0 0 0 0 43 36 UNDEFINED
15 18 .3 0 0 6 7 .39620 .2 9 8 9 5 .3 9 3 2 9 16 10 -2 3 .9 9 %
16 18 .1 4 4 0 0 .07350 .1 4 3 1 8 .0 7 2 9 6 26 22 96 .25%
17 18 .0 4 6 1 7 .00110 .0 4 5 9 1 .0 0 1 0 9 33 30 4 1 0 4 .2 5 %

2 17 .0 0 0 0 1 .00000 .0 0 0 0 1 .0 0 0 0 0 53 36 UNDEFINED
3 17 .0 0 0 0 1 .00000 .0 0 0 0 1 .0 0 0 0 0 52 36 UNDEFINED

11 17 .0 0 6 5 5 .00020 .0 0 6 5 1 .0 0 0 2 0 42 34 3 1 8 0 .5 8 %
13 17 .0 5 9 7 5 .00200 .0 5 9 4 1 .0 0 1 9 9 31 29 2 8 9 2 .5 7 %

2 16 .0 0 0 1 4 .00000 .0 0 0 1 4 .0 0 0 0 0 50 36 UNDEFINED
13 16 .3 0 6 5 4 .13780 .3 0 4 8 0 .1 3 6 7 9 15 19 12 2 .83%

1 15 .0 0 0 1 9 .00000 .0 0 0 1 9 .0 0 0 0 0 49 36 UNDEFINED
14 15 .6 9 4 9 9 .75140 .6 9 1 0 4 .7 4 5 8 8 2 1 -7 .3 5 %
13 14 .9 2 0 1 9 .86730 .9 1 4 9 5 .8 6 0 9 3 0 0 6 .28%

1 13 .0 0 2 9 1 .00000 .0 0 2 8 9 .0 0 0 0 0 44 36 UNDEFINED
2 13 .0 1 4 0 5 .00000 .0 1 3 9 7 .0 0 0 0 0 40 36 UNDEFINED
4 13 .0 2 6 9 6 .00040 .0 2 6 8 0 .0 0 0 4 0 37 33 6 6 5 0 .3 1 %

11 13 .3 9 0 3 6 .31570 .3 8 8 1 4 .3 1 3 3 8 10 13 23 .8 6 %
12 13 .6 0 7 1 6 .69100 .6 0 3 7 1 .6 8 5 9 2 4 2 -1 1 .9 9 %

1 12 .0 1 1 7 4 .00000 .0 1 1 6 7 .0 0 0 0 0 41 36 UNDEFINED
3 12 .0 1 6 8 7 .00000 .0 1 6 7 7 .0 0 0 0 0 39 36 UNDEFINED
5 12 .0 8 0 0 5 .00590 .0 7 9 6 0 .0 0 5 8 6 28 27 12 5 9 .1 1 %

10 12 .6 0 1 3 5 .68520 .5 9 7 9 3 .6 8 0 1 7 6 3 -1 2 .0 9 %
2 11 .0 6 2 2 3 .00000 .0 6 1 8 7 .0 0 0 0 0 30 36 UNDEFINED
3 11 .0 5 1 5 1 .00000 .0 5 1 2 2 .0 0 0 0 0 32 36 UNDEFINED
4 11 .1 7 7 3 1 .06020 .1 7 6 3 1 .0 5 9 7 6 22 25 195 .03%
5 11 .1 9 1 9 8 .05420 .1 9 0 8 9 .0 5 3 8 0 21 26 2 5 4 .8 0 %
6 11 .0 9 5 7 3 .00100 .0 9 5 1 9 .0 0 0 9 9 27 32 9 4 8 9 .1 0 %
8 11 .3 2 7 1 1 .20050 .3 2 5 2 5 .1 9 9 0 3 12 17 63 .42%
3 10 .0 4 1 0 2 .00000 .0 4 0 7 9 .0 0 0 0 0 35 36 UNDEFINED
7 10 .3 5 2 6 3 .43660 .3 5 0 6 2 .4 3 3 3 9 11 9 -1 9 .1 0 %
8 10 .4 1 3 4 3 .24860 .4 1 1 0 8 .2 4 6 7 7 8 15 66 .58%
3 9 .0 0 0 0 0 .00000 .0 0 0 0 0 .0 0 0 0 0 54 36 UNDEFINED
2 8 .0 6 5 1 9 .00460 .0 6 4 8 2 .0 0 4 5 7 29 28 1 3 1 9 .5 1 %
5 8 .1 6 9 5 2 .17920 .1 6 8 5 6 .1 7 7 8 8 23 18 -5 .2 4 %
7 8 .2 2 1 4 4 .26530 .2 2 0 1 8 .2 6 3 3 5 19 14 -1 6 .3 9 %
2 7 .1 5 2 2 4 .11970 .1 5 1 3 7 .1 1 8 8 2 25 20 27 .40%
6 7 .2 2 7 7 9 .58220 .2 2 6 4 9 .5 7 7 9 2 17 6 -6 0 .8 1 %
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3 6 .3 2 3 5 2 .5 8 3 2 0 .3 2 1 6 8 .5 7 8 9 2 13 5 - 4 4 .4 3 *
2 5 .4 4 1 5 8 .2 3 9 3 0 .4 3 9 0 6 .2 3 7 5 4 7 16 8 4 .8 4 *
3 4 .2 0 4 2 7 .0 6 0 6 0 .2 0 3 1 1 .0 6 0 1 5 20 24 2 3 7 .6 4 *
1 3 .6 3 7 2 0 .6 4 3 8 0 .6 3 3 5 8 .6 3 9 0 7 3 4 - .8 6 *
1 2 .7 3 5 4 3 .3 6 3 6 0 .7 3 1 2 4 .3 6 0 9 3 1 11 1 0 2 .6 0 *

THE MAXIMUM (ABSOLUTE) RELATIVE ERROR OP 
NORMALIZED ACTIVITY CRITICALITY INDEX I S i  ********
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THE 3 HOST STOCHASTICALLY DOMINATING PATHS THROUGH THE NETWORK AREi

THE RANK 1 PATH WITH 11 NODES:
1 3 6 7 10 12 13 14 15 19 2 0

THE RANK 2 PATH WITH 11 NODES:
1 3 6 7 10 12 13 14 15 18 20

THE RANK 3 PATH WITH 10 NODES:
1 3 6 7 10 12 13 14 19 20

FROM MONTE CARLO SIMULATION:

THE RANK 1 APPROXIMATED CRITICAL PATH WITH 11 NODES:
1 3 6 7 10 12 13 14 15 19 20

THE RANK 2 APPROXIMATED CRITICAL PATH WITH 11 NODES:
1 3 6 7 10 12 13 14 15 18 20

THE RANK 3 APPROXIMATED CRITICAL PATH WITH 10 NODES:
1 3 6 7 10 12 13 14 19 20

COMPARISONS OF PATHS:

RANK 1 PATHS:
NO. NODES NO. NODES NO. NODES 

(APPR.) (S IM .) IN  COMMON
11 11 11

RANK 2 PATHS:
NO. NODES NO. NODES NO. NODES

(A PPR .) (S IM .) IN  COMMON
11 11 11

RANK 3 PATHS:
NO. NODES NO. NODES NO. NODES

(A PPR .) (S IM .) IN  COMMON
10 10 10

Figure 53. PART-paths(val) program output.
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Table 34. “Matching Category” Performance Measure for Comparisons of Paths.

No. of 
Nodes

No. of 
Arcs

Order of Paths
Path 1 Path 2 Path 3

10 15 All 1-4 All
10 20 All All 1-4
10 30 All 1-4 1-4
10 40 All 1-4 All
20 30 All 1-4 1-4
20 40 All All 1-4
20 50 All 1-4 1-4
20 60 All All All
20 70 All 1-4 1-4
20 80 All All 1-4
30 45 All 1-4 1-4
30 60 All 1-4 All
30 75 All 1-4 1-4
30 90 All 1-4 1-4

enumeration by simulation, which requires extensive computational resources. Also 

viewed collectively across the 20 networks generated and tested, the combined set of nodes 

in the three most stochastically dominant paths and the combined set of nodes in the three 

most critical path were the same in virtually every comparison. Only very infrequently 

were there node mismatches between the two sets of nodes; when a mismatch occurred, it 

involved one or a small number of nodes whose connecting activities had very close 

criticality indices which were lower than the indices of all the activities connecting the other 

nodes in the combined set.

Again, the validation experiments were conducted with a version of the PART- 

paths(val) program which employs ten classes for polygonal approximation, without 

special consideration for the presence of any exponential distributions. If the number of 

classes for polygonal approximation is increased, errors build up at a slower rate, so the 

performance of this PART algorithm would be improved relative to the results of the 

validation experiments. Nonetheless, the results of the validation experiments appeared
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comparable to the previously reported results (Table 11), to the extent that information 

could be distilled from Dodin’s “ l”s and “0”s. Dodin reported that for all the paths that did 

not match, the stochastically dominating path differed from the corresponding critical path 

in no more than four arcs, which means, depending on how it is interpreted, that the paths 

differed by no more than two or no more than four nodes. The PART-paths(val) algorithm 

experienced mismatches involving more than four nodes in less than 2% of the pairwise 

comparisons in the validation experiments. A great majority of the path mismatches 

occurred in networks with arc to node densities higher than two, which confirmed one of 

Dodin’s observations. Often the three most stochastically dominating paths and the three 

most critical paths had several to many arcs in common, as illustrated by the results in 

Figure 51, which confirmed another of Dodin’s observations.

The validation experiments demonstrated that the implementation with polygonal 

approximation of the heuristic to determine the K  most stochastically dominant paths has 

the following properties:

(1) The most critical path is correctly determined by the most stochastically 

dominating path approximately 85% of the time, and differs from it by 

no more than four nodes the rest of the time. The second most critical 

path is similarly, correctly determined approximately 25% of the time, 

and the third most critical path is similarly, correctly determined 

approximately 20% of the time.

(2) The closeness between a critical path and its corresponding 

stochastically dominating path is not affected by the challenge of the 

activity distributions, although accuracy in approximation of activity and 

node criticality indices is. While the accuracy of approximating path 

criticality degrades with increasing challenge, the relative criticality of 

paths is maintained.
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Table 35. CPU Time Comparison of Sequential Approximation and PART Algorithms 
(Throughput Distributions).

Distribution
Type

Network size CPU time in seconds
No.

Nodes
No.
Arcs

Sequential
Approx. PART-ind PART-seq

Uniform 10 15 1.665 0.433 0.320
Triangular 10 15 1.673 0.447 0.324

Normal 10 15 1.680 0.452 0.343
Exponential 10 15 1.678 0.452 0.340

Gamma 10 15 1.695 0.497 0.375
Beta 10 15 1.766 0.561 0.452

Discrete 10 15 0.994 n/a n/a
All 10 15 1.623 0.530 0.405

Uniform 20 40 4.448 0.877 0.496
Uniform 30 50 5.335 1.242 0.610
Uniform 40 60 5.974 1.573 0.657
Uniform 40 80 7.919 2.261 0.873
Uniform 50 75 7.499 2.231 0.772
Uniform 50 100 10.867 3.244 1.002
Uniform 60 150 15.822 5.984 1.806

4.5 Run Time and Storage Requirements

In this section, the computer run time and array storage requirements of the PART 

programs, which were executed interactively on an IBM/RS/6000/580 computer, are 

discussed and compared with the requirements of competing programs, where known.

4.5.1 Run Time Requirements

Dodin (1980 and 1985a, 1984) reported computational experience with his computer 

implementations of sequential approximation and a heuristic for identifying the K  most 

stochastically dominating paths, both based on discretization. Table 35 gives the run times 

in CPU seconds on a UNI VAC 1100/80 for 15 networks which Dodin reported for his 

sequential approximation algorithm; each network had all activity duration distributions of a 

single type. Twenty “strongly random” replications of these networks were reduced with 

the PART-ind and PART-seq algorithms; the average run times are also shown in Table 35.
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Table 36. CPU Time Comparison of Sequential Approximation and PART Algorithms 
(Heuristic for the K  Most Stochastically Dominating Paths).

Problem
No.

Network size CPU time in seconds
No.

Nodes
No.
Arcs Discretization PART-path

1 10 15 0.92 0.703
2 10 20 1.94 0.963
3 10 30 7.80 2.040
4 10 40 11.60 2.943
5 20 30 9.47 2.117
6 20 40 9.92 3.270
7 20 50 15.61 4.453
8 20 60 26.81 5.473
9 20 70 31.55 5.487
10 20 80 39.84 8.123
11 30 45 16.70 3.207
12 30 60 29.26 6.377
13 30 75 33.96 7.337
14 30 90 43.65 9.103

For the smallest networks compared, PART-ind was almost four times as fast as sequential 

approximation based on discretization, and PART-seq was over five times as fast; for the 

largest networks, PART-ind was over 2.5 times as fast, and PART-seq was almost nine 

times as fast. Table 36 gives the run times in CPU seconds also for a UNI VAC 1100/80 

for 14 networks which Dodin reported for his algorithm which implemented a heuristic for 

identifying the K  most stochastically dominating paths. The activity duration distributions 

were assigned in blocks of ten from the distributions in Table 10. Twenty “strongly 

random” replications of these networks were analyzed with the PART-path algorithm; to 

achieve greater randomness than the block assignments, the activity duration distributions 

were individually randomly selected. The average run times are also shown in Table 36. 

For the smallest networks compared, PART-path was two to three times faster them the 

discretization implementation of the heuristic; for the largest networks, PART-path was 

almost five times as fast. While some of the differences in these run times may be
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Table 37. CPU Time Comparison of Ordered Recursive Conditioning and PART 
Algorithms (Throughput Distributions).

Case

Network size CPU time in seconds
No.

Nodes
No.
Arcs

Ordered Rec. 
Conditioning PART-ind PART-seq

TEST5A 5 Random 0.013 0.388 0.312
TEST6A 6 Random 0.035 0.449 0.370
TEST7A 7 Random 0.082 0.513 0.428
TEST8A 8 Random 0.741 0.567 0.462
TEST9A 9 Random 2.284 0.719 0.473

TEST10A 10 Random 5.215 0.735 0.609
TEST11A 11 Random 17.880 0.813 0.658
TEST12A 12 Random 75.730 1.128 0.949

accounted for by the fact that the IBM/RS/6000/580 is a faster computer than the UNIVAC 

1100/80 which Dodin used in the early 1980s, the polygonal approximation-based 

algorithms appear to be faster than the discretization-based algorithms, conservatively by a 

factor of two or three, possibly higher.

Hagstrom (1990) reported computational experience with her implementation, also 

based on discretization, of ordered recursive conditioning. Table 37 gives the run times 

(from Table 6, in CPU microseconds) on an IBM3081 for 19 test networks, including 

eight (TEST5A - TEST12A) which were generated with a random number of activities for a 

fixed number of nodes. Twenty “strongly random” replications of these networks were 

reduced with the PART-ind and PART-seq algorithms; the average run times are also 

shown in Table 37. Only for the very small networks with five to seven nodes were the 

run times of ordered recursive conditioning better than the run times of the polygonal- 

approximation based algorithms, which otherwise decisively outperformed the competition. 

Even for small networks with only 12 nodes, PART-ind and PART-seq were about 75 

times faster. Even with a generous allowance for differences in speed between the two 

computer systems, ordered recursive conditioning is not as efficient for stochastic network 

reduction as polygonal approximation and reduction.
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Run time prediction models were constructed and tested for the PART-ind, PART-seq, 

and PART-path algorithms. Dodin (1980 and 1985a, 1984, 1985b) established that the 

complexity of “independent multiple arcs” (dual arcs) is 0(CA) where C is the complexity 

of series-parallel reduction operations, the complexity of sequential approximation is also 

0(CA) , and the complexity of the heuristic for identifying the K  most stochastically 

dominating paths is 0(CKN2). For polygonal approximation, C is 0(cn r) , where c is 

the number of classes and nT is the number of regression fitting points. Consequently, the 

number of arithmetic computations performed by both the PART-ind and PART-seq 

algorithms is 0{cn,A), and run time models are of the form:

CPU Time £ (constant )cnrA 

When equality is assumed, the models can be log-linearized as:

log (CPU Time) -  log(constant) + log(c) + log(wr) + log(A)

For our implementations of polygonal approximation, c -1 0  and nr -  50 (Section 3.2.1 

[above]), so the models reduce to:

log (CPU Time) -  constant + log(A)

SLRs of run time data from the validation ANOVA experiments and the run time 

comparisons with previously reported results were performed on the SAS System, and the 

following models were obtained:

log (CPU Timeind) -  -3.742 +1.089log( A)

log (CPU Timeuq) -  -3.139 + 0.776 log(A)

The PART-ind run time model had a prob value for statistical significance of regression of

0.0001 and an adjusted P* of 0.968; the PART-seq model had a prob value of 0.0001 and 

an adjusted R2 of 0.874. According to the theory, the PART-path algorithm should have a 

crude run time model, ignoring lower order terms, of the form:

CPU T im e ^  s  (constant )cnrKN2
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A SLR of run time data from the run time comparisons with previously reported results 

was performed on the log-linearized model (equality assumed) on the SAS System, but the 

adjusted i?2 was only 0.56. The data were then fit to an 0{cnrKA) model of the form:

CPU T im e ^  s  (constant )cnrKA

and the resulting model for K -  3 was:

log (CPC/ T im e ^J  -  -4.257 +1.449log (A)

with a prob value of 0.0001 and an adjusted R2 of 0.983. All three run time models fit 

well. To test the predictive power of the models, 20 “strongly randomized” replications of 

a small number of networks with sizes different from the model development data were 

reduced, and the averages of the actual CPU times were compared with the 95% confidence 

intervals on the mean response from the models. Tables 38 and 39 summarize the results 

of the predictive tests. The models failed to predict well the average CPU time for the 

networks tested, indicating there is more to be understood about the modeling of run times 

of polygonal approximation-based network reduction algorithms.

Table 38. Predictive Performance of CPU Run Time Models (PART-ind and PART-seq).

Network size CPU time in seconds
No.

Nodes
No.
Arcs

PART-ind PART-seq
Average Confidence Int. Average Confidence Int.

15 30 0.925 0.907 - 1.023 0.690 0.555 - 0.664
25 45 1.473 1.422 - 1.577 0.937 0.770 - 0.898
35 55 1.854 1.769 - 1.963 1.094 0.899 - 1.050
45 70 2.716 2.289 - 2.565 1.375 1.077 - 1.277
55 125 5.553 4.200 - 4.943 2.537 1.629 - 2.075

Table 39. Predictive Performance of CPU Run Time Models (PART-path).

Network size CPU time in seconds
No.

Nodes
No.
Arcs

PA RT-path
Average Confidence Int.

15 25 1.471 1.375 - 1.642
25 55 4.425 4.422 - 5.017
30 70 5.976 6.181 -7.221
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4.5.2 Computer Storage Requirements

The PART programs in the appendices were constructed as proof-of-concept 

demonstrators and, as such, are limited in the sizes of network they can analyze. Each 

program can accommodate networks with up to and including 100 nodes, N , and the 

maximum number of activities that may exist in a network with N  nodes, N(N  -1 ) / 2. A 

maximum of 100 “strongly random” networks can be generated upon request, no more 

than five most stochastically dominating paths can be identified, and the number of 

simulation replications is capped at 10,000. To reduce error build up, the programs use 

double precision arithmetic. This requires approximately 3.728 megabytes of computer 

storage for arrays for PART-ind, 2.883 megabytes for PART-seq, and 4.583 megabytes 

for PART-paths. Unfortunately, no other researcher has reported storage requirements for 

a competing program. Hagstrom (1990) stated that no analysis of computer storage 

requirements was performed for her implementation of ordered recursive conditioning, and 

Dodin (1980 and 1985a, 1984) did not address the question of computer storage 

requirements for his programs for sequential approximation and the heuristic for identifying 

the K  most stochastically dominating paths. Analysis of unpublished computer code for 

Dodin’s programs suggested that his sequential approximation program requires about

0.994 megabytes computer storage and is limited to 50 nodes and 100 activities (although 

he has reported performance results for larger sized networks) and 1,000 simulation 

replications, using single precision arithmetic. Similarly, his program for identifying the 

K  most stochastically dominating paths appears to require about 0.493 megabytes of 

memory for array storage exclusive of network simulation to determine the actual critical 

paths. Crude projections of equivalency of Dodin’s programs to the PART programs are 

that his sequential approximation program would require 3 to 4  megabytes of memory to 

match the PART-ind and PART-seq capabilities and that his critical path algorithm would 

require about 2 megabytes plus a critical path simulator to match the PART-path capability.
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary

A method for the linear polynomial (polygonal) approximation of continuous activity 

resource consumption (duration) distributions of stochastic project management networks 

was developed in this research. The method was derived from the spline approximations 

used in numerical differentiation and integration and motivated by the shortcomings of the 

first attempt at an exact solution to stochastic network reduction by Martin (1965). It is the 

first new method for network approximation and reduction to be advanced since 

discretization, the basis for all previously developed algorithms. The method was 

successfully mated with three network reduction approaches - arc duplication, sequential 

approximation, and a heuristic for identifying the K  most critical paths - to form the 

members of a new family of Polygonal Approximation and Reduction Techniques (PART), 

and proof-of-concept computer programs were written for these three PART algorithms. 

The PART algorithm using “independent multiple arcs” (dual arcs) represents the first 

successful implementation of an arc-duplication reduction method. PART algorithms 

approximate the throughput distribution for small-to-moderate size networks, and the K  

most critical paths for large networks. Collectively, PART algorithms constitute an analytic 

reduction capability operative across the entire range of project management networks.

To validate the performance of polygonal approximation-based algorithms, an 

experimental framework for algorithm testing was developed following the principles of 

design of experiments; no such framework had previously been employed in the testing of 

network reduction algorithms. Validation testing confirmed that the accuracy of polygonal 

approximation is a function of network size, as driven by the number of activities much 

more strongly than the number of nodes, how great a challenge the activity distribution
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functions present to series-parallel reduction operations based on polygonal approximation, 

and the number of classes in the partitions of the domains of continuous activity 

distributions over which linear polynomials are piecewise-defined to approximate activity 

probability density functions, just as accuracy of discretization approximation is a function 

of how densely discretization points are packed over the domains. Compared to other 

discretization-based methods - sequential approximation and ordered recursive conditioning 

- PART algorithms were demonstrated to be as accurate or more accurate in the 

characterization of the throughput distribution function. Important findings were the 

observations that the PART algorithm for identifying the K  most stochastically dominating 

paths performs differently with respect to its ability to match the first most critical path, the 

second, the third, etc., and that the algorithm is insensitive to challenging distributions in 

its ability to discern relative criticality among network paths. PART algorithms, by virtue 

of their design, execute faster than their discretization competitors; speeds as many as nine 

times as fast as their competitors were experienced during performance testing, while 

across the board it is conservative to say that PART algorithms are two to three times as 

fast as all other network reduction methods. As analytic techniques, PART algorithms are 

orders of magnitude faster than simulation-approximations without significant losses in 

accuracy when simulation results are taken as “true.”

In conclusion, polygonal approximation and associated PART algorithms represent a 

new and innovative concept in the analytic arsenal aimed at stochastic project management 

networks. In validation testing, conducted on network reduction algorithms for the first 

time in accordance with a design of experiments framework, they exhibited performance at 

worst comparable, but usually superior, to their competitors in terms of accuracy and 

speed. They have the potential to put the power of network management into the hands of 

anyone in possession of a desktop computing capability. In this research, they have 

demonstrated their worthiness for continued development.
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5.2 Recommendations for Further Research

The following topics are recommended for further research:

1. Investigate the sensitivity of the performance of PART-ind and PART- 

seq algorithms to network size and structure and the challenge of the 

activity distribution functions to polygonal approximation-based series- 

reduction operations.

2. Investigate the sensitivity of the performance of PART algorithms to the 

number of classes in the partitions of domains of activity distributions 

and the number of regression fitting points.

3. Develop more accurate predictive models for run times of PART 

algorithms.

4. Refine the “matching category” performance measure for the PART- 

paths algorithm and characterize the ability of the algorithm to identify 

both specific critical paths and membership sets of highly critical 

activities which should receive management focus.

5. Investigate the incorporation of probabilistic branching into PART 

algorithms to widen their scope of application outside of the class of 

acyclic, directed networks.

6. Investigate expansion of the set of distributions generally used to model 

activity resource consumption (duration) and the possible potential to 

enhance PART algorithm performance. In particular, consider Dodin’s 

suggestions concerning the extreme value distribution and the 

engineered distributions developed by Golenko-Ginzburg which are 

auto-reproductive under series-parallel reduction operations.

7. Investigate possible applications of polygonal approximation to other 

discretization-based engineering algorithms, particularly in scheduling.
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c
c
C POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE
C (PART)
C ALGORITHM
C FOR
C ACYCLIC, DIRECTED NETWORKS
C USING
C  " IN D E P E N D E N T  M U L T I P L E  A R C S "  N E T W O R K S
C  T O  A P P R O X IM A T E
C  N O N S E P A R A B L E  N E T W O R K S

C  
C
C THIS PROGRAM IS WRITTEN IN FORTRAN 77 AND IS PRESENTLY DESIGNED
C TO BE OPERATED IN A TIME SHARING MODE WITH ALL DATA INPUT FROM
C THREE (3) DATA FILES. THE PROGRAM DIRECTS OUTPUT IN EIGHT (8)
C OPTIONAL FORMATS TO A TIME SHARING TERMINAL. IF DESIRED, THE
C READ STATEMENTS AT THE BEGINNING OF THE MAIN PROGRAM CAN BE
C MODIFIED TO ALLOW DATA INPUT DIRECTLY FROM THE TIME SHARING
C TERMINAL.
C
C THE CURRENT DIMENSIONS OF THE PROGRAM ALLOW A NETWORK WITH A
C MAXIMUM OF 100 NODES AND A MAXIMUM OF 99 ACTIVITIES BEGINNING
C AT EACH NODE. THESE LIMITS CAN BE EXPANDED BY CHANGING THE
C DIMENSIONS OF THE XINT AND VALUE ARRAYS.
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C INSTRUCTIONS FOR BUILDING DATA FILES
C -------------------------------------------------------
C
C  D A T A  F I L E  D A T  A N .  D A T
C
C  T H I S  D A T A  F I L E  C O N T A IN S  A  D E S C R I P T I O N  O F  T H E  N E T W O R K  S T R U C T U R E .
C EACH NODE REQUIRES 4 RECORDS WITH A TOTAL OF 103 FIELDS:
C FIELD 1 IS THE BEGINNING NODE.
C FIELDS 2 THRU 100 ARE THE NUMBERS OF THE NODES AT WHICH THE
C ACTIVITIES WHICH BEGIN AT THE NODE IN FIELD 1 TERMINATE.
C FIELD 101 IS A DUMMY FIELD AND SHOULD BE SET EQUAL TO 0 OR 1.
C FIELD 102 INDICATES HOW MANY ACTIVITIES TERMINATE AT THE NODE
C INDICATED IN FIELD NUMBER 1.
C FIELD 103 INDICATES HOW MANY ACTIVITIES BEGIN AT THE NODE INDI-
C CATED IN FIELD NUMBER 1.
C RECORD 1 CONTAINS FIELDS 1-26; RECORD 2 CONTAINS FIELDS 27-52;
C RECORD 3 CONTAINS FIELDS 53-78; RECORD 4 CONTAINS FILEDS 79-103.
C
C
C DATA FILE DAT AH. DAT
C
C THIS DATA FILE CONTAINS A DESCRIPTION OF THE DISTRIBUTIONS OF
C EACH OF THE ACTIVITIES IN THE NETWORX.
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c
c THERE ARE 7 FIELDS OF DATA.
c FIELD 1 IS THE NODE NUMBER.
c FIELD 2 IS THE NUMBER OF THE ACTIVITY COMING FROM THE NODE.
c FIELD 3 IS THE CODE FOR THE TYPE OF DISTRIBUTION.
c 1 = TRIANGULAR DISTRIBUTION
c 2 - NORMAL DISTRIBUTION
c 3 - EXPONENTIAL DISTRIBUTION
c 4 = GAMMA DISTRIBUTION
c 5 - BETA DISTRIBUTION
c 6 * UNIFORM DISTRIBUTION
c FIELD 4 IS
c NODE FOR A TRIANGULAR DISTRIBUTION.
c MEAN FOR A NORMAL DISTRIBUTION.
c MEAN FOR AN EXPONENTIAL DISTRIBUTION.
c ALPHA FOR A GAMMA OR A BETA DISTRIBUTION.
c 1/(B—A) FOR A UNIFORM DISTRIBUTION.
c FIELD 5 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION.
c FIELD 6 IS THE MINIMUM VALUE OF THE DISTRIBUTION.
c
c

FIELD 7 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.
c
c
n

DATA FILE CONTROL.DAT
c THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL
cp PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.
L
c THERE ARE 4 FIELDS OF DATA.
c FIELD 1 IS THE NUMBER OF NODES IN THE NETWORK.
c FIELD 2 IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
c FIELD 3 IS THE OUTPUT OPTION DESIRED FOR THE PART RESULTS.
c 1 - A DESCRIPTION OF EACH OF THE 10 CLASSES OF THE
c FINAL DISTRIBUTION IN THE FORM OF Y * B(O) + B(l) X
c 2 = A CUMULATIVE DISTRIBUTION FUNCTION OF THE FINAL
c DISTRIBUTION.
c 3 “ A DISCRETE PROBABILITY DENSITY FUNCTION AND A
c SIMULATION FREQUENCY HISTOGRAM IN GRAPHICAL FORMAT.
c 4 = A COMBINATION OF 1 AND 2 ABOVE.
c 5 * A COMBINATION OF 1 AND 3 ABOVE.
c 6 = A COMBINATION OF 2 AND 3 ABOVE.
c 7 ■= A COMBINATION OF 1, 2, AND 3 ABOVE.
c 8 = ONLY THE EXPECTED VALUE AND STANDARD DEVIATION.
c FIELD 4 IS THE NUMBER OF ITERATIONS OF THE MONTE CARLO
c SIMULATION REQUESTED (MAXIMUM - 10,000).
c
c

0 * NO MONTE CARLO SIMULATION IS REQUESTED.
c
c
n

NOTE
V#
c
c
c
p

ALL UNUSED FIELDS MUST BE ZEROED OUT.

V*

c
c
c M A I N  P R O G R A M
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c 
c ft********************************************************* 
c

REAL*8 XINT(200,99,12),VALUE(200 ,99 ,10 ,3 ),A(130)
REAL*8 ZVAL(130,5),XX(100,2),TOTAAR(51)
REAL*8 SIMT(100,10000),SXMTOT(51)
REAL*8 AREA,AVG,COUNT,SIG,SIZE

* ,XD1,XD2,XD3,XD4,X,XSIZE
* ,DIFF
REAL * 4 HIGH, BLOW, PERCNT, KSCR2 0 , KSCRl 0 , KSCRO 5 ,KSCRO2,KSCRO1, DMAX 
INTEGER I , IDUAL, IEDN, IFLAG,IPRINT,ISTN,ISTNP

* , MM
* , N, NACTS , NAN, NCL , NCROSS , NET , NETT , NSIM, NSTART
* ,J ,J 1 ,J 2 ,J 3
* ,K,KK
* ,L,Ll,L2,L3,L4,LASTK,LASTMM,L3COUNT 
DIMENSION NET(200,103),NETT(103)
COMMON /  PARAl /XINT, VALUE 
COMMON/PARA2/ ZVAL 
COMMON/PARA3/A 
COMMON/PARA4/XX 
COMMON/ PARA5/NET 
COMMON/PARA6/SIMT 
CHARACTER*! KBL, KBM
DATA KBL/' '/,KBM/1 *'/

p DATA NCL/0/,NCROSS/0/
w
Cp OPEN INPUT AND OUTPUT FILES

OPEN (UNIT = 11, FILE - 'datan.dat')
OPEN (UNIT = 12, FILE = 'datah.dat')
OPEN (UNIT * 13, FILE = 'control.dat')

c
p

READ INFORMATION INTO DATA MATRICES.
READ (13,1900) N,NACTS,NAN,NSIM
DO 0910 I = 1,N
READ (11,1901) (NETT(J), J = 1,103)
LI = NETT(1)
DO 0900 K * 1,103 
NET(Ll,K) = NETT(K)

0900 CONTINUE 
0910 CONTINUE

C
C DO 1010 READS DATA FROM DATAH AND LOADS THIS DATA INTO
C THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF
C THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
C AND, IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A
C PIECEWISE POLYGONAL FUNCTION.
C

DO 1010 I = 1,NACTS
READ (12,1902) Ll,L2,XDl,XD2,XD3,XD4,XD5
VALUE(L1,L2,1,3) = XD1
VALUE(L1,L2,2,3) = XD2
VALUE(LI,L2,3,3) = XD3
XINT(LI,L2,1) = XD4
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XINT(L1,L2,2) * XD5
IF (IDINT(VALUE(LI,L2,1/3)) .NE. 6) THEN 
CALL LINEAR (Ll,L2,NCL)
GO TO 1010
DO 1000 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE 
FORM FOR SUBROUTINES SERIES AND PARA.
ELSE
XINT(L1,L2,11) “ XINT(L1,L2,2)
X = XINT(Ll ,L2 , 1)
XSIZE = (XINT(L1,L2,2)-XINT(L1,L2,1))/10.
DO 1000 J - 1,10
VALUE(LI,L2,J,1) - VALUE(L1,L2,2,3)
XINT(L1,L2,J) - X 
X - X-fXSIZE 

1000 CONTINUE 
END IF 

1010 CONTINUE
MONTE CARLO SIMULATION OF THE NETWORK.

IF (NSIM .EQ. 0) GO TO 1030
NSTART - N
CALL SIMULT (N,NSIM)
REDUCTION OF THE NETWORK BEGINS.
DO 1040 CHECKS IF A CONVOLUTION (SERIES-REDUCTION) OPERATION 
IS POSSIBLE, i.e., IF THERE EXISTS A NODE I NOT ON THE OUTPUT 
CRITICAL LIST SUCH THAT

IN-DEGREE NODE I = OUT-DEGREE NODE 1 = 1 .
1030 L3COUNT = 2 
1035 DO 1040 I=L3COUNT,N-1 

L3 = I
IF ((NET(I,102)+NET(I,103)) .EQ. 2) GO TO 1050 

1040 CONTINUE
IF (IN-DEGREE NODE I + OUT-DEGREE NODE I) > 2 FOR ALL I NOT = 1 
OR N, NETWORK IS NONSEPARABLE, SO PROCEED TO " INDEPENDENT 
MULTIPLE ARCS" APPROXIMATION.
IF (L3COUNT .EQ. 2) GO TO 1145 
GO TO 1080

C
C A CONVOLUTION IS POSSIBLE WITH THE TWO ACTIVITIES, ONE OF WHICH
C TERMINATES AT NODE L3 AND THE OTHER OF WHICH STARTS AT NODE L3.
C DO 1060 IDENTIFIES THE STARTING NODE NUMBER AND THE ACTIVITY
C NUMBER OF THE ACTIVITY TERMINATING AT NODE L3. THEN THE SERIES
C SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES IS CONVOLUTED INTO
C AN EQUIVALENT ACTIVITY.
C
1050 DO 1060 1=1,L3-1

DO 1060 J=2,NET(I,103)+l 
LI = I
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L2 = J-l
IF (NET(I,J) .EQ. L3) GO TO 1070 

1060 CONTINUE
1070 CALL SERIES(LI,L2,L3,1)

NET(L1,L2+1) - NET(L3,2)
NET(L3,2) = 0 
NET(L3,101) - 0 
NET(L3,102) = 0 
NET(L3,103) - 0 
L3COUNT = L3+1
IF (L3COUNT .EQ. N) GO TO 1080 
GO TO 1035
DO 1140 CHECKS IF A MAXIMUM (PARALLEL-REDUCTION) OPERATION IS 
POSSIBLE, i.e., IF THERE EXIST TWO DIFFERENT ACTIVITIES, Al AND 
A2, SUCH THAT

STARTING NODE (Al) - STARTING NODE (A2), AND 
ENDING NODE (Al) = ENDING NODE (A2).

THEN THE PARALLEL SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES 
IS PARALLEL-REDUCED WITH A MAXIMUM OPERATION INTO AN EQUIVALENT 
ACTIVITY.

1080 DO 1140 1=1,N-l 
Ll = I

1085 DO 1090 J=2,NET(L1,103)
L2 = J-l
IF (NET(L1,J) .EQ. 0) GO TO 1140 
DO 1090 K=J+l,NET(Ll,103)+l 
L3 = K—1
IF (NET(L1,J) .EQ. NET(Ll,K)) THEN 
IEDN = NET(Ll,J)
GO TO 1110 
ELSE
GO TO 1090 
END IF 

1090 CONTINUE
GO TO 1140 

1110 CALL PARA(L1,L2,L3)
NET(L1,103) = NET(L1,103)—1 
NET(IEDN,102) = NET(IEDN,102)-1 
DO 1120 K=L3,NET(L1,103)
NET(L1,K+1) = NET(Ll,K+2)
DO 1115 L=l,10
XINT(L1,K,L)= XINT(L1,K+1,L)
VALUE(L1,K,L,1) = VALUE(Ll,K+1,L,1)
VALUE(Ll,K,L,2) = VALUE(Ll,K+1,L,2)

1115 CONTINUE
XINT(L1,K,11) = XINT(L1,K+1,11)

1120 CONTINUE
K = NET(L1,103)+1 
NET(Ll,K+1) = 0 
DO 1130 L=1,10 
XINT(L1,K,L) = 0.
VALUE(Ll,K,L,1) = 0.
VALUE(Ll,K,L,2) = 0.

1130 CONTINUE
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XINT(L1,K,11) * 0.
GO TO 1085 

1140 CONTINUE 
GO TO 1030
THROUGH 1146 CHECKS IE THE NETWORK HAS BEEN SERIES-PARALLEL 
REDUCED TO A SINGLE EQUIVALENT ACTIVITY.

1145 IF (NET(1,103) .NE. 1) GO TO 1147 
IF (NET(N,102) .NE. 1) GO TO 1147 
DO 1146 1-2,N-l
IF (NET(I,102) + NET(I,103)) 1540,1146,1147

1146 CONTINUE
THE NETWORK HAS BEEN SERIES-PARALLEL REDUCED TO A SINGLE EQUIVA
LENT ACTIVITY.
GO TO 1240
TO 1240 REDUCES THE NONSEPARABLE NETWORK USING "INDEPENDENT MULTI
PLE ARCS" APPROXIMATION WITH THE "FIRST AVAILABLE ARC WITH 

ROPERTY
1" METHOD.

1147 NCROSS = NCROSS+1
DO 1148 IDENTIFIES THE START NODE ISTN OF THE FIRST AVAILABLE 
CROSS-CONNECTION IN THE NONSEPARABLE NETWORK.
DO 1148 1=2,N-2
IF ((NET(I,102) .EQ. 1) .AND. (NET(I,103) .GT. 1)) THEN 
ISTN - I 
GO TO 1149 
ELSE
GO TO 1148 
END IF

1148 CONTINUE
THROUGH 1151 IDENTIFIES THE START NODE ISTNP AND THE ACTIVITY 
NUMBER IDUAL OF THE SINGLE ACTIVITY TERMINATING AT NODE ISTN.
THIS ACTIVITY IS THE "A" ACTIVITY CONNECTING NODE ISTNP AND NODE 
ISTN WHICH MUST BE "INDEPENDENTLY MULTIPLIED."

1149 DO 1151 1=1,N-3
DO 1150 J=2,NET(I,103)+1
IF (NET(I,J) .EQ. ISTN) THEN
ISTNP = I
IDUAL = J-l
GO TO 1152
ELSE
GO TO 1150 
END IF

1150 CONTINUE
1151 CONTINUE

NDUAL IS THE NUMBER OF "INDEPENDENT MULTIPLES" OF ACTIVITY IDUAL
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C WHICH MUST BE INSERTED INTO THE NETWORK.
C
1152 NDUAL * NET(ISTN,103)-l 

NNEW - N+NDUAL
C
C DO 1153 INCREASES NODE NUMBERS ABOVE ISTN BY NDUAL.
C

DO 1153 J«1,N
DO 1153 J1«1,NET(J,103)+1
IF (NET(J,J1) .GT. ISTN) NET(J,Jl) - NET(J,J1) +NDUAL

1153 CONTINUE
C
C DO 1154 SHIFTS ROWS OF NET ARRAY, FROM N DOWN TO ISTN+1, AHEAD
C NDUAL ROWS.
C

DO 1154 J«NNEW,ISTN+NDUAL+1,-1
DO 1154 Jl-1,103
NET(J,J1) * NET(J-NDUAL,Jl)
NET(J-NDUAL,Jl)*0

1154 CONTINUE
C
C DO 1155 INSERTS NDUAL NODES AFTER NODE ISTN FOR NDUAL "INDEPENDENT
C MULTIPLES" OF THE "PROPERTY 1" ACTIVITY IN THE NET ARRAY.
C

DO 1155 J=ISTN+1,ISTN+NDUAL 
NET(J,1) = J
NET(J,2) ” NET(ISTN,J-ISTN+2)
NET(ISTN,J-ISTN+2) - 0 
NET(J,101) * 1 
NET(J,102) * 1 
NET(J,103) = 1

1155 CONTINUE
NET(ISTN,103) - 1

C
C DO 1156 SHIFTS THE TERMINATING NODE NUMBERS OF ACTIVITIES STARTING
C AT NODE ISTNP AFTER ISTN AHEAD NDUAL POSITIONS IN THE NET ARRAY.
C

DO 1156 J=NET(ISTNP,103)+NDUAL+1,IDUAL+NDUAL+2,-1 
NET(ISTNP, J) - NET(ISTNP,J-NDUAL)
NET(ISTNP,J-NDUAL) = 0

1156 CONTINUE
C
C DO 1157 INSERTS NDUAL NODES - ISTN+1,...,ISTN+NDUAL - AS THE
C TERMINATING NODES OF THE "INDEPENDENTLY MULTIPLIED" "A" ACTIVITY
C FROM NODE ISTNP IN THE NET ARRAY.
C

DO 1157 J=l,NDUAL
NET(ISTNP,IDUAL+J+1) = ISTN+J

1157 CONTINUE
NET(ISTNP,103) = NET(ISTNP,103)+NDUAL

C
C DO 1158 SHIFTS ROWS OF XINT ARRAY, FROM N DOWN TO ISTN+1, AHEAD
C NDUAL ROWS.
C

DO 1158 J=NNEW,ISTN+NDUAL+1,-1 
DO 1158 Jl=l,99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

n
n

n
n

n
n

 
o

o
n

o
 

o
o

o
o

o
 

o
g

n
o

o
 

o
o

o
o

o
2 7 7

DO 1158 J2=l,12
XXNT(J,Jl,J2) -  XINT(J-NDUAL, J l , J2 )
XINT(J-NDUAL,Jl,J2) * 0.

1158 CONTINUE

DO 1159 SHIFTS ACTIVITY LINEARIZATION POINTS FOR ACTIVITIES 
2 ,  , NDUAL+1 FROM NODE ISTN TO THE FIRST AND ONLY ACTIVITIES
FROM THE NEW NODES -  ISTN+1, . . . , ISTN+NDUAL -  IN THE XINT ARRAY.

DO 1159 Jl-1,NDUAL 
DO 1159 J2 -l,12
XINT(ISTN+J1,1 ,J 2 ) = XINT( ISTN, Jl+ 1 , J2 )
XINT(ISTN,Jl+1, J 2 ) = 0.

1159 CONTINUE

DO 1160 SHIFTS ACTIVITY LINEARIZATION POINTS FOR ACTIVITIES 
AFTER IDUAL FROM NODE ISTN AHEAD NDUAL POSITIONS IN THE XINT

DO 1160 J1-NET(ISTNP,103),IDUAL+NDUAL+1,-1 
DO 1160 J2-l,12
XINT(ISTNP,Jl,J2) * XINT(ISTNP,Jl-NDUAL,J2)
XINT(ISTNP,Jl-NDUAL,J2) = 0.

1160 CONTINUE
DO 1161 INSERTS NDUAL COPIES OF THE ACTIVITY LINEARIZATION POINTS 
OF ACTIVITY IDUAL FROM NODE ISTNP TO THE NEW NODES - ISTN+1,..., 
ISTN+NDUAL - IN THE XINT ARRAY.
DO 1161 Jl=l,NDUAL 
DO 1161 J2=l,12
XINT(ISTNP,IDUAL+J1,J2) = XINT(ISTNP,IDUAL,J2)

1161 CONTINUE
DO 1162 SHIFTS ROWS OF VALUE ARRAY, FROM N DOWN TO ISTN+1, AHEAD 
NDUAL ROWS.
DO 1162 J=NNEW,ISTN+NDUAL+1,-1 
DO 1162 Jl-1,99 
DO 1162 J2—1,10 
DO 1162 J3—1,3
VALUE(J,Jl,J2,J3) = VALUE(J-NDUAL,Jl,J2,J3)
VALUE(J-NDUAL,J1,J2,J3) - 0.

1162 CONTINUE
DO 1163 SHIFTS ACTIVITY POLYGONAL APPROXIMATION COEFFICIENTS FOR 
ACTIVITIES 2,...NDUAL+1 FROM NODE ISTN TO THE FIRST AND ONLY 
ACTIVITIES FROM THE NEW NODES - ISTN+1,...,ISTN+NDUAL - IN THE 
VALUE ARRAY.
DO 1163 Jl=l,NDUAL 
DO 1163 J2=l,10 
DO 1163 J3=l,3
VALUE(ISTN+J1,1,J2,J3) = VALUE(ISTN,Jl+1,J2,J3)
VALUE(ISTN,Jl+1,J2,J3) = 0.

1163 CONTINUE

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

2 7 8

c
C DO 1164 SHIFTS ACTIVITY POLYGONAL APPROXIMATION COEFFICIENTS FOR
C ACTIVITIES AFTER IDUAL FROM NODE ISTNP AHEAD NDUAL POSITIONS IN
THE
C VALUE ARRAY.
C

DO 1164 J1=NET(ISTNP,103),IDUAL+NDUAL+1,-1 
DO 1164 J2=l,10 
DO 1164 J3=l,3
VALUE(ISTNP,Jl,J2,J3) « VALUE(ISTNP,Jl-NDUAL,J2,J3)
VALUE(ISTNP,Jl-NDUAL,J2,J3) - 0.

1164 CONTINUE
C
C DO 1165 INSERTS NDUAL COPIES OF THE ACTIVITY POLYGONAL APPROXIMA-
C TION COEFFICIENTS OF ACTIVITY IDUAL FROM NODE ISTNP TO THE NEW
C NODES - ISTN+1,...,ISTN+NDUAL - IN THE VALUE ARRAY.
C

DO 1165 Jl=l,NDUAL 
DO 1165 J2=l,10 
DO 1165 J3=l,3
VALUE(ISTNP,IDUAL+J1,J2,J3) = VALUE(ISTNP,IDUAL,J2,J3)

1165 CONTINUE 
N « NNEW 
GO TO 1030

C
C AT THIS POINT IN THE MAIN PROGRAM ALL CALCULATIONS HAVE
C BEEN COMPLETED AND DATA IS PREPARED FOR FINAL OUTPUT.
C
1240 PRINT 1910 

L = 1 
KK = 0
DO 1270 I * 1,10

C
C THE XX ARRAY IS USED FOR HISTOGRAM AND CDF CALCULATIONS.
C

XX(1,1) - XINT(1,1,1)
SIZE * (XINT(1,1,2)-XINT(1,1,1))/5.
LASTK = L+4 
DO 1250 K » L,LASTK 
KK * KK+1
XX(K,2) » VALUE(1,1,I,1)+(VALUE(1,1,I,2)*XX(K,1))
IF ((KK .LE. 1).AND.(L .GT. 4)) XX(K,2) = (((VALUE(1,1,I,2) 

S*XX(K,1))+VALUE(1,1,1,1))+(VALUE(1,1,1-1,2)*XX(K,1))+
&VALUE(1,1,1-1,1))/2.
XX(K+1,1) * XX(K,1)+SIZE 

1250 CONTINUE 
KK = 0 
L = L+5
IF ((NAN .EQ. 1).OR.(NAN .EQ. 4).OR.(NAN .EQ. 5).OR.

&(NAN .EQ. 7)) GO TO 1260 
GO TO 1270 

1260 IF (I .EQ. 1) PRINT 1920
PRINT 1930,I,XINT(1,1,1),XINT(1,1,1+1)
PRINT 1940,VALUE(1,1,1,1),VALUE(1,1,1,2)

1270 CONTINUE
XX(51,2)=VALUE(1,1,10,1)+VALUE(1,1,10,2)*XX(51,1)
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o TOTAAR IS USED FOR CDF CALCULATIONS.
AREA - 0.0 
DO 1280 I - 1,50
AREA ” AREA+( (XX( 1,2 )+XX(1+1,2 )) *SIZE* .5)
TOTAAR(I) = AREA 

1280 CONTINUE
AREA = 1.0/AREA 
DO 1290 I - 1,50 
TOTAAR(I) - TOTAAR(I)*AREA 

1290 CONTINUE
DO 1295 I * 51,2,-1 
TOTAAR(I ) -  TOTAAR(I - 1)

1295 CONTINUE
TOTAAR(l) - 0.0 
XX(1,1) - XINT(1,1,1)
IF ((NAN .EQ. 2).OR.(NAN .EQ. 4).OR.(NAN .EQ. 6).OR.

6(NAN .EQ. 7)) GO TO 1300 
GO TO 1320 

1300 PRINT 1910 
PRINT 1950 
DO 1310 I = 1,51 
PRINT 1960,XX(I,1),TOTAAR(I)

1310 CONTINUE
1320 IF ((NAN .EQ. 3).OR.(NAN .EQ. 5).OR.(NAN .EQ. 6).OR.

&(NAN .EQ. 7)) GO TO 1330 
GO TO 1340 

1330 IPRINT * 51 
IFLAG = 0
CALL PLOT (IPRINT,KBL,KBM,IFLAG)

1340 CONTINUE
DO 1360 COMPUTES AN APPROXIMATED EXPECTED VALUE USING 
GROUPED DATA. DO 1370 COMPUTES AN APPROXIMATED STANDARD 
DEVIATION.
AVG =0.0
SIG =0.0
LASTMM = IPRINT-1
DO 1360 MM = 1,LASTMM
AVG = AVG+((XX(MM,l)+(SIZE/2.))*(TOTAAR(MM+1)-TOTAAR(MM))) 

1360 CONTINUE
DO 1370 MM = 1,LASTMM
SIG = SIG+(((XX(MM,1)+(SIZE/2.)-AVG)**2)*(TOTAAR(MM+1)- 
&TOTAAR(MM)))

1370 CONTINUE
SIG = DSQRT(SIG)
PRINT 1910
PRINT 1970,AVG,SIG
DO 1380 MM = 1,4
HLOW = AVG— (FLOAT(MM)*SIG)
HIGH = AVG+(FLOAT(MM)*SIG)
THESE ARE FIXED PERCENTAGES. THE ASSUMPTION IS MADE THAT 
THE FINAL PRODUCT WILL RESEMBLE A NORMAL DISTRIBUTION. THEY
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C CORRESPOND TO 1, 2, 3, AND 4 STANDARD DEVIATIONS RESPECTIVELY.
C

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT « 95.44
IF (MM .EQ. 3) PERCNT * 99.73
IF (MM .EQ. 4) PERCNT = 99.99
PRINT 1980,BLOW,HIGH,PERCNT 

1380 CONTINUE
PRINT 1985,N,NCROSS 
IF (NSIM .EQ. 0) GO TO 1530

C
C THROUGH 1500 COMPILES OUTPUT FROM THE MONTE CARLO SIMULATION.
C
C DO 1410 COMPILES THE CUMULATIVE DISTRIBUTION FUNCTION.
C

COUNT - 0.0 
SIMTOT(l) = 0.0 
DO 1410 J * 1,50
DO 1400 K - 1,NSIM
IF((XX(J,1) .LE. SIMT(NSTART,K)) .AND. (SIMT(NSTART,K ) .LT. 

&XX(J+1,1))) COUNT * COUNT+1.
1400 CONTINUE

XX(J+1,2) = COUNT/DFLOAT(NSIM)
SIMTOT(J+l) = SIMTOT(J)+XX(J+l,2)
COUNT “ 0.0 

1410 CONTINUE
PRINT 1910 
PRINT 1925
IF ((NAN .EQ. 2) .OR. (NAN .EQ. 4) .OR. (NAN .EQ. 6) .OR.

& (NAN .EQ. 7)) GO TO 1420 
GO TO 1440 

1420 PRINT 1950
DO 1430 J - 1,51
PRINT 1960,XX(J,1),SIMTOT(J)

1430 CONTINUE
1440 IF ((NAN .EQ. 3) .OR. (NAN .EQ. 5) .OR. (NAN .EQ. 6) .OR.

6(NAN .EQ. 7)) GO TO 1450 
GO TO 1470 

1450 DO 1460 J = 1,50
XX(J,1) - XX(J,l)+(SIZE/2.)
XX(J,2) = XX(J+1,2)

1460 CONTINUE
IPRINT = 50 
IFLAG - 1
CALL PLOT (IPRINT,KBL,KBM,IFLAG)

1470 CONTINUE
C
C DO 1480 COMPUTES AN APPROXIMATED EXPECTED VALUE AND
C DO 1490 COMPUTES AN APPROXIMATED STANDARD DEVIATION
C USING GROUPED DATA.
C

AVG =0.0 
SIG =0.0 
DO 1480 J = 1,50
AVG = AVG+(XX( J,l) *(SIMT0T( J+l)-SIMTOT( J) ) )

1480 CONTINUE
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DO 1490 J  = 1,50
SIG = SIG+( ( (XX( J , 1)-AVG) **2) * (SIMTOT(J+l) -SXMTOT( J) ) )

1490 CONTINUE
SIG = DSQRT(SIG)
PRINT 1910
PRINT 1970,AVG,SIG
DO 1500 MM - 1,4
BLOW - AVG—(FLOAT(MM)*SIG)
HIGH - AVG+(FLOAT(MM)*SIG)

C
C IT IS ASSUMED THAT THE DISTRIBUTION THROUGH NODE I RESEMBLES
C A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO
C 1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE
C EXPECTED VALUE.
C

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT - 95.44
IF (MM .EQ. 3) PERCNT * 99.73
IF (MM .EQ. 4) PERCNT * 99.99
PRINT 1980,HLOW,HIGH,PERCNT 

1500 CONTINUE
C
C COMPARE POLYGONAL APPROXIMATION OF THROUGHPUT DISTRIBUTION
C WITH SIMULATED THROUGHPUT DISTRIBUTION USING THE KOLMOGOROV-
C SMIRNOV ONE-SAMPLE TEST.
C

KSCR20 = 1.0730/SQRT(50.)
KSCR10 = 1.2239/SQRT(50.)
KSCRO5 = 1.3581/SQRT(50.)
KSCRO2 - 1.5174/SQRT(50.)
KSCRO1 = 1.6276/SQRT(50.)

C
C COMPUTE THE K-S TEST STATISTIC D-MAX.
C

DMAX =0.0
DO 1520 I = 2,51
DIFF = DABS(SIMTOT(I)-TOTAAR(I))
IF (DIFF .GT. DMAX) DMAX * DIFF 

1520 CONTINUE
PRINT 1910 
PRINT 1991,DMAX
PRINT 1992,KSCR2 0,KSCR10,KSCR05,KSCR02,KSCRO1 
IF (DMAX .LE. KSCRO5) PRINT 1993 

1530 STOP 
1540 PRINT 1990 

STOP
C
C FORMAT STATEMENTS
C
1900 FORMAT (13,IX,14,IX,II,IX, 15)
1901 FORMAT (3(12,25(IX, 12)/),12,21(IX,12),IX,II,2(IX,12))
1902 FORMAT (2(12,IX),F1.0,4(IX,F8.2 ))
1910 FORMAT (1B1)
1920 FORMAT (IX, 'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION', 

&' THROUGH THE PROJECT IS:' ///)
1925 FORMAT (IX, 'THE SIMULATED TIME DISTRIBUTION',
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S' THROUGH THE PROJECT IS:' ///)
1930 FORMAT (IX,’INTERVAL',13,4X,'LOWER LIMIT ~',F8.2,3X,

&'UPPER LIMIT -',F8.2 //)
1940 FORMAT (15X,'X* (’,F12.8,’) + (’,F12.8,’) T ’ ///)
1950 FORMAT (14X,* CUMULATIVE DISTRIBUTION FUNCTION' //

S21X,'T',13X,'F(T)')
1960 FORMAT (16X,F9.3,F17.8)
1970 FORMAT (12X,'EXPECTED VALUE OF T «',F13.8 /

S12X,'STANDARD DEVIATION OF T «',F13.8 //)
1980 FORMAT (IX,'THE PROBABILITY OF THE PROJECT THROUGHPUT TIME',

S' FALLING BETWEEN' / 1X,F8.3,' TIME UNITS AND ',F8.3,
S' TIME UNITS IS ABOUT ',F5.2,' %.'//)

1985 FORMAT (/ IX, 'THE NUMBER OF NODES IN THE FINAL NETWORK WAS ',13, 
S'.' // IX,'THE NUMBER OF CROSS-CONNECTIONS REDUCED WAS ',12,'.')

1990 FORMAT (IX,'PROGRAM STOPPED' / IX, ' IMPROPER NODE NUMBER(S) '
S,'ENCOUNTERED')

1991 FORMAT (IX, 'KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST COMPARISON OF ',
S'POLYGONAL APPROXIMATION' / IX, 'OF NETWORK THROUGHPUT DISTRIBUTION 
6 AND SIMULATED NETWORK THROUGHPUT' / IX,'DISTRIBUTION:' //
SIX,'K-S TEST STATISTIC D-MAX “ ', F6.4 /)

1992 FORMAT (IX,'K-S CRITICAL VALUES:' / 15X,'20 PERCENT = ',F6.4 / 
S15X,'10 PERCENT * ',F6.4 / 16X,'5 PERCENT = ',F6.4 /
S16X, '2 PERCENT * ',F6.4 / 16X,'1 PERCENT = ',F6.4 /)

1993 FORMAT (IX,'FAIL TO REJECT THE NULL HYPOTHESIS THAT THE ',
S' DISTRIBUTIONS ARE THE SAME' / IX,'AT THE 5% LEVEL OF ’,
S'STATISTICAL SIGNIFICANCE.')
END
END MAIN PROGRAM

S U B R O U T I N E  P A R A

SUBROUTINE PARA (Ll,L2,L3)
REAL*8 VALUE(200 ,99 ,10 ,3),XINT(200, 99,12)
REAL*8 XVAL,ZVAL(130,5),PAR(2,15,6) ,FACT,B(130)
REAL*4 Z
INTEGER L1,L2,L3,NV1,NV2 
INTEGER K4(2,30)
INTEGER I,IINT,N,NCL,J,K,K3,L6,LASTJ,LASTK 
COMMON /PARA1 /XINT, VALUE 
COMMON/PARA2/ ZVAL 
COMMON/PARA3/B

SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE 
EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP 
F(X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.

NV1 = 10 
NV2 * 10 
DO 2020 N = 1,2 
L6 = L2
IF (N .EQ. 2) L6 = L3 
FACT = 0
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DO 2010 J  = 1,10 
B(1) * XINT(L1,L6,J)

C
C DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X)
C INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS
C CUMULATIVE DISTRIBUTION CAP F(X) .
C

DO 2000 I  = 1,2
XV AL -  VALUE(L I,L6, J , I )
Z -  FLOAT(I )
PAR(N,J,1+1) * XVAL/Z
PAR(N,J,1) « PAR(N,J,1)+((—1•0)*(XVAL/Z)*(B(1)**I))
K4(N,J) -  1+1 

2000 CONTINUE
IF (J  .GT. 1) PAR(N,J,1) -  PAR(N,J,1J+FACT 
FACT = PAR (N, J ,  1) + (PAR(N, J , 2 )*XINT(L l, L6, J + l )) + (PAR(N, J , 3) 

fi*(XINT(Ll,L6,J+l)**2))
2010 CONTINUE 
2020 CONTINUE

C
C DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.
C

DO 2040 I  = 1,22
IF (I  .GT. 11) GO TO 2030
B( I ) -  XINT(L1,L2, 1)
GO TO 2040 

2030 B(I ) = XINT(Ll,L3,1-11)
2040 CONTINUE 

NCL = 21 
CALL SORT(NCL)

C
C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER-
C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
C

IINT = 0
LASTJ = NCL+1
DO 2080 J  = 1 ,LASTJ
IF ( (XINT(L1,L2,1) .GE. XINT(L1, L3,1 ) -0 .001) .AND.

&(XINT(LI, L2,1) .LE. XINT(Ll,L3,1)+0.001)) GO TO 2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(L l, L2,1) .LE. XINT(Ll,L3,1)+0.001) GO TO 2050 
IF (XINT(L1,L3,J+l) .GE. XINT(Ll,L2,1)-0 .001) IINT = J  
IF ( (XINT(L1,L3,J+1) .LE. 0.001)

6 .OR. ( (XINT(L1,L2,1) .GE. XINT(L1,L3,J+l)-0.001)
&.AND. (XINT(L l ,L2,1) .LE. XINT(Ll,L3,J+l)+0.001)
&.AND. (XINT(Ll,L3, J+2) .LE. 0 .001))) GO TO 2180 
GO TO 2080
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2050 IF (XINT(Ll,L2,J+l) .GE. XINT(L1,L3,1) - 0 .001) IINT -  J  
IF ( (XINT(Ll,L2,J+l) .LE. 0.001)

&.OR. ( (XINT(L1,L3,1) .GE. XINT(L1,L2, J + l)-0.001)
6 .AND. (XINT(L1,L3,1) .LE. XINT(L1,L2, J+ l)+ 0 .001)
6 .AND. (XINT(Ll,L2,J+2) .LE. 0 .001))) GO TO 2160 
GO TO 2080 

2060 LASTK -  NCL-(IINT-l)
DO 2070 K « 1 ,LASTK 
B(K) » B(K+IINT)
B(K+IINT) *= 0 

2070 CONTINUE
GO TO 2090 

2080 CONTINUE 
2090 NCL -  NCL-IINT

DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE 
EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED 
BETWEEN THE TWO ARCS.

N1 -  0
N2 =■= 0
DO 2150 I  * 1,NCL 
DO 2110 J  « 1,11

DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION 
THAT ARE VALID FOR THE B(I) VALUE BEING CONSIDERED. N1 AND 
N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.

IF (N1 .GE. 1) GO TO 2100
IF ( ( (B( I ) .GE. XINT(L1,L2,J)-0.001) .AND. (B(I+1) 

fi.LE. XINT(L1,L2, J+l)+0.001) ) .OR. (XINT(L1,L2,J+l) .LE. 0.001)) 
&N1 = J 

2100 CONTINUE
IF (N2 .GE. 1) GO TO 2110
IF ( ( (B (I) .GE. XINT(Ll,L3,J)-0.001) .AND. (B(I+1)

&.LE. XINT(L l,L 3 ,J+ l)+ 0 .001)) .OR. (XINT(Ll,L3,J+l) .LE. 0.001)) 
&N2 -  J 

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) « 1
IF (N1 .GT. NV1) K4(1,N1) * 1

DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR 
CAP F(X) AND CAP G(X).

LASTJ -  K4(2,N2)
LASTK = K4(1,N l)
DO 2130 J  = 1 ,LASTJ 
DO 2120 K * 1 ,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) = 1
IF (N1 .GT. NVl) PAR(1,N1,K) = 1
K3 « J+K-l
ZVAL(I,K3) = ZVAL(I,K3) + (PAR(1 ,N l,K ) *PAR(2 ,N 2,J))

2120 CONTINUE 
CONTINUE

DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE
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C MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A
C LITTLE H(X) FOR THAT PRODUCT.
C

DO 2140 J  = 1,4
ZVAL(I,J) = ZVAL(I , J + l)*FLOAT(J )
ZVAL(I,J+l) * 0 

2140 CONTINUE 
N1 = 0 
N2 * 0 

2150 CONTINUE
C
C LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE RESULTS OF THE
C PARALLEL REDUCTION WITH THE B(O) AND B (l) FORM IN EACH OF 10
C CLASSES.
C

VALUE(L l,L 2 ,1 ,3) * 99.
CALL LINEAR(Ll,L2, NCL)
GO TO 2180 

2160 DO 2170 I = 1,10
VALUE(Ll,L2,1 ,1 ) = VALUE(Ll,L3,1,1)
VALUE(L1,L2,I,2) = VALUE(L1,L3,I,2)
XINT(L l, L2, I ) = XINT(L1,L3, I )

2170 CONTINUE
XINT(L1,L2,11) -  XINT(L1,L3,11)

2180 VALUE(Ll,L2,l,3) = 0 
DO 2210 1 - 1 , 2  
DO 2200 J  -  1,10 
DO 2190 K = 1,3 
PAR(I , J , K) = 0 

2190 CONTINUE 
2200 CONTINUE 
2210 CONTINUE 

RETURN 
END

C END SUBROUTINE PARA
C
C ***********************************************************
c
C S U B R O U T I N E  S E R I E S
C
C ************************************************************
c

SUBROUTINE SERIES (Ll,L2,L3,L4)
REAL*8 VALUE(200 ,99 ,10 ,3 ),XINT(200,99,12)
REAL*8 ZVAL(130,5),XLIM(2 ),A(130)
REAL*8 F0, F I, GO,G1, XL 
INTEGER L1,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCL1 ,NE 
COMMON/PARA1/XINT, VALUE 
COMMON/PARA2/ ZVAL 
COMMON/PARA 3 /A

C
C SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY
C DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE
C POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X) .
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c
C THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE
C CONVOLUTION.
C
C THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA.
C

K = 0
C
C DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION
C BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.
C

DO 3010 I  « 1,12
IF ( (XINT(L3,L4,1) .LE. 0).AND.(I .GT. 1)) GO TO 3020 
DO 3000 J  = 1,12
IF ( (XINT(L1,L2, J) .LE. 0).AND.(J .GT. 1)) NCL1 » J-2 
IF ( (XINT(Ll,L2, J) .LE. 0).AND.(J .GT. 1)) GO TO 3010 
K * K+l
A(K) = XINT(L l,L2, J )+XINT(L3,L4,I)

3000 CONTINUE 
3010 CONTINUE 
3020 NINT -  1-2 

NCL * K-l
C
C DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X)
C DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES
C CREATED BY COMBINING F(X) AND G(T-X) . DO 3100 IS CONTROLLED 
C BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS
C ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY
C CLASS IN BOTH DISTRIBUTIONS.
C

CALL SORT (NCL)
DO 3120 K = 1 ,NCLl
DO 3110 I  = 1 ,NCL
DO 3100 J  = 1 ,NINT
IK = 0

C
C THIS IF STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE
C INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K
C BEING CONTROLLED BY DO 3120.
C

IF ((A( I ) .GE. XINT(L l, L2,K)+XINT(L3,L4,J)-0.001) .AND. (A(I+1) 
&.LE. XINT(L1,L2,K+1)+XINT(L3,L4,J+l)+0.001)) IK = J  

IF (IK .GE. 1) GO TO 3030 
GO TO 3100 

3030 ISEL(l) = 0 
ISEL(2) = 0

C
C THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE
C UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER
C THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL
C IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.
C

IF (XINT(L l, L2,K) .GE. (A(1+1)-XINT(L3,L4, J + l)-0.001)) GO TO 3040 
XLIM(l) = XINT(L3,L4,J+l)
ISEL(l) = 999 
GO TO 3050
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3040 XLIM(l) = XINT(L1,L2,K)
3050 IF (XINT(Ll,L2,K+l) .LE. (A(I)-XINT(L3,L4,J)+0.001)) GO TO 3060 

XLIM(2) * XINT(L3,L4,J)
ISEL(2) -  999 
GO TO 3070 

3060 XLIM(2) = XINT(L1,L2,K+l)
3070 CONTINUE

DO 3090 NE -  1,2 
FO « VALUE(Ll,L2,K,1)
FI « VALUE(Ll,L2,K,2)
GO -  VALUE(L3,L4,IK,1)
G1 -= VALUE (L3,L4,IK,2)
XL -  XLIM(NE)
Z -  1.0
IF (NE .EQ. 1) Z -  -1 .0  
IF (ISEL(NE) .EQ. 999) GO TO 3080

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE
C LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS
C BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE
C SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT
C IS BEING EVALUATED.
C

ZVAL(1,1) = ZVAL(1,1) + ( (FO*G0*XL) + ( (F1*G0*XL**2) / 2 . ) 
&+((-1.0*Fl*Gl*XL**3)/3.)+ ((-1.0*F0*Gl*XL**2)/2.) )*Z 

ZVAL(1,2) =* ZVAL(I,2 )+ ( ( (F1*G1*XL**2)/ 2 .)+ (F0*G1*XL)) *Z 
ZVAL(1,3) -  ZVAL(1,3) + ( ( - 1 .0*FO*G1) /2 . ) *Z 
GO TO 3090

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL FOR LIMITS.
C IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE
C OF THE DIFFERENT POLYNOMIAL CREATED WHEN THE INTEGRATION
C INVOLVES LIMITS IN THE FORM OF (T-X).
C

3080 ZVAL(1,1) = ZVAL(I,l)+((-1.0*FO*GO*XL)+((Fl*GO*XL**2)/2.) 
&+((Fl*Gl*XL**3)/3.)+ ((-1.0*FO*Gl*XL**2)/2.))*Z 

ZVAL(1,2) => ZVAL(I,2)+(( -1 .0*F1*GO*XL)+(FO*GO)- 
&((Fl*Gl*XL**2)/2.))*Z 

ZVAL(1,3) = ZVAL(I,3)+((F1*G0)/2.)*Z 
ZVAL(1,4) = ZVAL(I,4)+((F1*G1)/6.)*Z 

3090 CONTINUE 
3100 CONTINUE 
3110 CONTINUE 
3120 CONTINUE

C
C LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE CONVOLUTION
C RESULTS WITH THE B(0) AND B(l) FORM IN EACH OF 10 CLASSES.
C

VALUE(L l, L2,1 ,3 ) = 99.
CALL LINEAR (L1,L2,NCL)
RETURN
END

C END SUBROUTINE SERIES
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

2 8 8

c
c

S U B R O U T I N E P L O T

C
C
C
C
C

SUBROUTINE PLOT (IPRINT,KBL,KBM,IFLAG)
REAL*8 XX(1 0 0 ,2 ),SORT 
CHARACTER* 1 KBL,KBM,I<INE( 101)
INTEGER I , IFLAG,IPRINT,J,JPLOT,K,NN 
COMMON/ PARA4/XX

PLOT IS USED TO CREATE THE HISTOGRAM FOR FINAL OUTPUT. 
THE VARIABLE SORT IN THIS SUBROUTINE IS  NOT RELATED TO 
THE SUBROUTINE SORT.

0 .50)) PRINT 4930 
0 .25)) PRINT 4940

SORT -  XX (1,2)
DO 4000 I  -  2 , IPRINT
IF (SORT .LE. XX(I,2 ) )  SORT = XX(I,2)

4000 CONTINUE
PRINT 4900
IF (IFLAG .EQ. 0) THEN 
PRINT 4910 
ELSE
PRINT 4915 
END IF
IF (SORT .GT. 0.5) PRINT 4920 
IF ((SORT .GT. 0 .2 5 ) .AND.(SORT .LE.
IF ((SORT .GT. 0.10) .AND.(SORT .LE.
IF ((SORT .GT. 0.05) .AND.(SORT .LE. 0 .10)) PRINT 4950
IF (SORT .LE. 0.05) PRINT 4960
PRINT 4970
DO 4030 I  = 1 ,IPRINT 
DO 4010 J  = 1,51 
LINE(J) -  KBL 

4010 CONTINUE
IF (SORT .GT. 0.5) JPLOT -  (INT((XX(I,2)*50.)+0.5))+l 
IF ((SORT .GT. 0.25) .AND.(SORT .LE. 0 .50))

SJPLOT = (INT((XX(I,2)*100.)+0.5))+1 
IF ((SORT .GT. 0.10) .AND.(SORT .LE. 0 .25))

SJPLOT * ( INT((XX(I,2)*200.)+0.5 ) )+l 
IF ((SORT .GT. 0 .0 5 ) .AND.(SORT .LE. 0 .10))

&JPLOT * ( INT((XX(1,2)*500.)+0.5) )+l 
IF (SORT .LE. 0.05) JPLOT * ( INT((XX(I,2)*1000.0)+0.5 ) )+l 
IF (JPLOT .LE. 0) JPLOT “ 1 
IF (JPLOT .GT. 51) JPLOT * 51 
DO 4020 NN = 1 ,JPLOT 
LINE(NN) = KBM 

4020 CONTINUE
PRINT 4980,XX(1,1) , (LINE(K) , K = 1, JPLOT)

4030 CONTINUE
C
C
C

FORMAT STATEMENTS 

4900 FORMAT (1H1)
4910 FORMAT ( 15X,'PROBABILITY DENSITY FUNCTION' / / )  
4915 FORMAT ( 15X,' SIMULATION FREQUENCY HISTOGRAM' / / )  
4920 FORMAT (9X ,'0  .20 .40 .60 .80 1 . 0 ' )
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4930 FORMAT (9X ,'0 .10 .20 .30 .40 .5 0 ’ )
4940 FORMAT ( 9X ,'0 .05 .10 .15 .20 .2 5 ')
4950 FORMAT (9X ,'0 .02 .04 .06 .08 .1 0 ')
4960 FORMAT (9X,'0 .01 .02 .03 .04 .0 5 ')
4970 FORMAT (9X, ' I — — I — — I ---- — I ---- — I --------

4980 FORMAT ( 1X,F8.3,2X,51A1) 
RETURN 
END
END SUBROUTINE PLOT

S U B R O U T I N E  L I N E A R

SUBROUTINE LINEAR (L1,L2,NCL)
REAL*8 VALUE(200 ,99 ,10 ,3 ),XINT(200 ,99 ,12 ),ZVAL(130,5),A(130)
REAL*8 Q,Q1,Q2, STD, SUMX, SUMY, SUMXY, SUMSQ
REAL*8 ALPHA,AREA,BETA,FACT,SIZE,W,X,XLMBDA,XMEAN
REAL*8 XMODE, XSIZE, Y
INTEGER Ll,L2
COMMON/PARAl/XINT,VALUE
COMMON/ PARA2/ ZVAL
COMMON/ PARA3/A
EXTERNAL DGAMMA

SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA 
FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH 
THE B(O) AND B(l) FORM IN EACH OF 10 CLASSES THROUGH THE USE 
OF SIMPLE LINEAR REGRESSION.

XMODE = VALUE(L l,L2,2,3)
XMEAN = VALUE(Ll,L2,2,3)
STD = ((VALUE(Ll,L2,2,3)-XINT(Ll,L2,l))/3.)
XLMBDA = VALUE(L1,L2,2,3)-XINT(L1,L2, 1)
ALPHA = VALUE(Ll,L2,2, 3)
BETA -  VALUE(L l, L2,3 ,3 )
SIZE -  (XINT(L1,L2,2)-XINT(L1,L2,1))/10.
IF (IDINT(VALUE(L1,L2,1,3) ) .EQ. 99) SIZE = (A(NCL+1)-A( 1) ) /10 . 
XINT(L l, L2,11) -  XINT(Ll,L2,2 )
IF ( IDINT(VALUE(Ll,L2,1 ,3)) .EQ. 99) XINT(L1,L2,11) «A(NCL+1)
X -  XINT(L1,L2,1)
IF ( IDINT( VALUE (Ll ,L 2 ,1 ,3 )) .EQ. 99) X = A(l)
DO 5000 I  « 1,10 
XINT(L l, L2, I ) ■ X 
X = X+SIZE 

5000 CONTINUE
DO 5050 I = 1,10 
X « XINT(L l, L2, I )
SUMY = 0.
SUMX = 0.
SUMXY = 0.
SUMSQ = 0.

W CONTROLS THE NUMBER OF DATA POINTS USED IN THE REGRESSION
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COMPUTATIONS.

W = 10.+IDINT(SIZE*3.)
XSIZE = SIZE/W 
LASTJ = IDINT(W)
DO 5040 J  = 1 ,LASTJ
IP (IDINT(VALUE(L l, L2,1 ,3 ))  .NE. 99) GO TO 5030 
DO 5010 K3 -  1rNCL 
K •  0
IF ((X .GE. A(K3) ) .AND.(X .LE. A(K3+1))) K -  K3 
IP (K .GE. 1) GO TO 5020 

5010 CONTINUE

SERIES OR PARA GENERATED DISTRIBUTIONS.

5020 Y - ZVAL(K,1) + (ZVAL(K,2)*X)+(ZVAL(K,3)MX**2))
&+(ZVAL(K,4)*(X**3))

5030 CONTINUE

TRIANGULAR DISTRIBUTION.

IP ( IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 1) THEN
IP (XINT(L1,L2,1) .LE. X .AND. X .LE. XMODE) THEN
Y -  (2 .* (X-XINT(L1,L2,1 ) ) ) / ( ( XMODE-XINT(L l,L 2 ,1 ))*10 .‘SIZE)
ELSE
Y = (2 .* (XINT(L1,L2,11)-X )) / ( (XINT(Ll,L2,1 1 )-XMODE)*10.*SIZE) 
END IP

NORMAL DISTRIBUTION.

ELSE IP ( IDINT(VALUE(L1,L2,1 ,3)) .EQ. 2) THEN
Y -  ( 1 . /(STD*2.506628275))*(DEXP(< —1 .0 )* ( ( (X-XMEAN)/STD)**2)/2 .) ) 

EXPONENTIAL DISTRIBUTION (SHIFTED).

ELSE IP (IDINT(VALUE(L1,L2,1,3)) .EQ. 3) THEN
Y « ( 1 . /XLMBDA)*(DEXP((-1 .0 )* ((X-XINT(Ll,L2,1 ) ) /XLMBDA)))

GAMMA DISTRIBUTION.

ELSE IP (IDINT(VALUE(L1,L2,1,3)) .EQ. 4) THEN
Y = ( 1 . / (  DGAMMA( ALPHA) *( BETA* ‘ALPHA)) ) *DEXP(-X/BETA) *(X“ ( ALPHA-1. 
&))
BETA DISTRIBUTION.

ELSE IF ( IDINT(VALUE(L1,L2,1,3)) .EQ. 5) THEN
Y = (DGAMMA(ALPHA+BETA) / (DGAMMA(ALPHA)‘DGAMMA(BETA) ) )*

& (1 ./(1 0 .‘ SIZE)* *(ALPHA+BETA-2 .))♦
&((X-XINT(L1,L2,1))**(ALPHA-1.))  *
6((XINT(L1,L2,11)-X)**(BETA-1.))
END IF
IF (Y .LT. 0) Y = 0 
SUMX = SUMX+X 
SUMY = SUMY+Y 
SUMXY = SUMXY+(X*Y)
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SUMSQ = SUMSQ+(X* * 2)
X = X+XSIZE 

5040 CONTINUE
VALUE (L l , L2, I ,2) -  (SUMXY- ( (SUMX* SUMY)/W) ) /(SUMSQ- ( (SUMX* * 2 )  /W) ) 
VALUE (L l , L2,1 ,1 ) -  (SUMY/W) -  (VALUE (L l, L2, 1 ,2 ) * (SUMX/W) )

5050 CONTINUE

DO 5060 CALCULATES THE AREA UNDER THE APPROXIMATED DISTRIBUTION. 
AN ADJUSTMENT FACTOR FOR THE AMOUNT THAT THIS AREA HAS BEEN 
UNDERESTIMATED OR OVERESTIMATED IS THEREBY DETERMINED.

DO 5060 I  * 1,10
Q = XINT (L1,L2,I+1) -XINT (L l, L2, 1)
Q1 * (XINT(Ll ,L2, I ) ‘VALUE(Ll ,L2,1 ,2 ) )+VALUE(L l, L2,1 ,1 )
Q2 -  (XINT(L1 ,L2, 1+1) ‘VALUE(Ll ,L2,1 ,2 )  )+VALUE(Ll,L2,1 ,1 )
IF (Q1 .LT. 0 .) VALUE(L l, L2,1 ,1 ) -  VALUE(Ll,L2,I,l) + (Q l* (-1 .0 ))
IF (Q2 .LT. 0 .) VALUE (L l, L2,1 ,1 ) = VALUE (Ll ,L2 , 1 ,1 ) + (Q2* (-1 .0 ))
IF (Q1 .LT. 0 .) Q1 * 0.
IF (Q2 .LT. 0 .)  Q2 = 0.
AREA « AREA+( (Q1+Q2)*Q*0.5)

5060 CONTINUE
FACT * 1 .0 /AREA

DO 5070 ADJUSTS THE COEFFICIENTS OF ALL THE LINEAR POLYNOMIAL 
PIECES BY THE FACTOR COMPUTED IN DO 5060 IN ORDER TO NORMALIZE 
THE AREA BACK TO ONE. THIS ACTS TO REDUCE ACCUMULATING ERRORS 
DURING PROGRAM COMPUTATIONS.

DO 5070 I  = 1,10
VALUE (Ll , L2 ,1 ,1 ) = VALUE (L l, L2,1 ,1 ) *FACT 
VALUE (L 1 ,L 2 ,I,2 ) = VALUE(L1,L2,I,2)*FACT 

5070 CONTINUE 
AREA = 0
DO 5080 I  = 1,130 
A( I ) = 0
ZVAL(1 ,1 ) = 0 
ZVAL(1 ,2 ) “ 0 
ZVAL(1 ,3 ) -  0 
ZVAL(1 ,4 ) = 0 

5080 CONTINUE 
RETURN 
END
END SUBROUTINE LINEAR

S U B R O U T I N E  S O R T

SUBROUTINE SORT (NCL) 
REAL*8 A (130),B 
INTEGER NCL 
INTEGER I,K1 
COMMON/PARA3/A
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SUBROUTINE SORT IS USED TO CONDUCT AN ALGEBRAIC SORT OF DATA 
CREATED IN THE SERIES AND PARA SUBROUTINES.

6000 K1 = 0
DO 6010 I  = 1,NCL
IF ((A (I) .LT. (A(1+1) + .0 1 )) .AND.(A (I) .GT. (A(1+ 1)-.01)) )

6GO TO 6020 
IF (A (I) .LT. A(1+1)) GO TO 6010 
IF (A (I) .GT. A(1+1)) B -  A{I)
A (I) -  A(1+1)
A(I+1) = B 
K1=K1+1 

6010 CONTINUE
IF (Kl .GE. 1) GO TO 6000 
GO TO 6040 

6020 NCL * NCL-1
LASTJ * NCL+1 
DO 6030 J  = I,LASTJ 
A(J) -  A (J+ l)
A (J+ l) “ 0 

6030 CONTINUE
GO TO 6000 

6040 RETURN 
END
END SUBROUTINE SORT

S U B R O U T I N E  S I M U L T

SUBROUTINE SIMULT (N,NSIM)
REAL*8 XINT(200,99 ,12),VALUE(200,99,10,3)
REAL*8 T(100,9 9 ),SIMT(100,10000)
REAL*8 ALPHA,BETA,X,XLNGTH,XLMBDA,XMAX,XMEAN,XMIN,XMODE 
REAL*8 RN, STD, TTEMP, TMAX 
DIMENSION NET(200,103)
INTEGER ISEED,ISIM,N,NDIST,NSIM 
COMMON/ PARAl/ XINT, VALUE 
COMMON/PARA5/NET 
COMMON/PARA6/SIMT
EXTERNAL DRNUN, DRNNOR, DRNEXP, DRNGAM, DRNBET, RNSET

DO 7130 GENERATES A SIMULATED NETWORK THROUGHPUT FOR EACH OF 
NSIM ITERATIONS OF THE MONTE CARLO SIMULATION OF THE NETWORK.

ISEED = 123456789 
CALL RNSET(ISEED)
DO 7130 ISIM-1, NSIM

DO 7080 GENERATES A RANDOM VALUE FROM THE ACTIVITY RESOURCE 
CONSUMPTION (ACTIVITY TIME) DISTRIBUTION OF EACH ACTIVITY.

DO 7080 1=1,N-l 
DO 7070 J=1,NET(I,103)
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NDIST = IDINT(VALUE(I,J,1,3))
XMIN « XINT(I, J , 1)
XMAX = XINT(I, J , 11)
XLNGTH “ XMAX—XMIN
GO TO (7010,7020,7030,7040,7050,7060) NDIST

TRIANGULAR DISTRIBUTION.

7010 CALL DRNUN(1 ,RN)
XMODE « VALUE(I,J,2,3)
X -  (XMODE-XMIN)/XLNGTH 
IF (RN .GT. X) GO TO 7015
T ( I ,J )  = XMIN+DSQRT(RN*XLNGTH*(XMODE-XMIN))
GO TO 7070

7015 T ( I , J) “  XMAX-DSQRT(XLNGTH *(XMAX-XMODE)* (1 .-RN))
GO TO 7070

NORMAL DISTRIBUTION.

7020 CALL DRNNOR(1,RN)
XMEAN = VALUE(I,J,2,3)
STD = (XMEAN-XMIN)/3 .
T ( I ,J )  = (RN*STD)+XMEAN
IF ( ( T ( I , J) .LT. XMIN) .OR. (T (I ,J )  .GT. XMAX)) GO TO 7020 
GO TO 7070

EXPONENTIAL DISTRIBUTION.

7030 CALL DRNEXP(1,RN)
XLMBDA = VALUE(I , J , 2 ,3 )-XMIN 
T ( I ,J )  = (XLMBDA*RN)+XMIN 
IF (T (I ,J )  .GT. XMAX) GO TO 7030 
GO TO 7070

GAMMA DISTRIBUTION.

7040 ALPHA = VALUE(I,J,2,3)
BETA -  VALUE(I,J,3,3)
CALL DRNGAM(1 ,ALPHA,RN)
T ( I , J ) = BETA*RN
IF (T (I , J) .GT. XMAX) GO TO 7040
GO TO 7070

BETA DISTRIBUTION.

7050 ALPHA = VALUE(I,J,2,3)
BETA = VALUE(I , J , 3, 3)
CALL DRNBET(1,ALPHA,BETA,RN)
T ( I , J) = XMIN+(XLNGTH*RN)
GO TO 7070

UNIFORM DISTRIBUTION.

7060 CALL DRNUN(1 ,RN)
T ( I , J) = XMIN+(XLNGTH*RN)

7070 CONTINUE
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7080 CONTINUE

DO 7120 GENERATES THE CRITICAL PATH TO EACH NODE. THE 
SIMULATED TIME THROUGH NODE I  FROM SIMULATION ITERATION L 
IS STORED IN SIMT(I,L).

SIMT( 1 ,ISIM) = 0.0 
DO 7120 1=2,N 
TMAX = 0 . 0

DO 7110 DETERMINES THE STARTING NODES AND THE ACTIVITIES WHICH 
TERMINATE AT NODE I  > STARTING NODES, AND COMPUTES THE SIMULATED 
THROUGHPUT VALUE THROUGH NODE I  AS THE MAXIMUM OF THE 

[(THROUGHPUT VALUE THROUGH STARTING NODE) +
(ACTIVITY VALUE FROM STARTING NODE TO NODE I ) ] .

DO 7110 J= 1 ,I-1  
DO 7100 J1=2,NET(J,103)+l 
IF (N ET(J,J1)-I) 7100,7090,7100 

7090 TTEMP = SIM T(J,ISIM )+T(J,Jl-1)
IF (TTEMP .LT. TMAX) GO TO 7100 
TMAX = TTEMP 

7100 CONTINUE 
7110 CONTINUE

SIMT(I,ISIM) = TMAX 
7120 CONTINUE 
7130 CONTINUE 

RETURN 
END

C END SUBROUTINE SIMULT
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c 
c
C POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE
C (PART)
C ALGORITHM
C FOR
C ACYCLIC, DIRECTED NETWORKS
C USING
C ’SEQUENTIAL APPROXIMATION* METHOD
C 
C
C THIS PROGRAM IS WRITTEN IN FORTRAN 77 AND IS PRESENTLY DESIGNED 
C TO BE OPERATED IN A TIME SHARING MODE WITH ALL DATA INPUT FROM
C THREE (3) DATA FILES. THE PROGRAM DIRECTS OUTPUT IN EIGHT (8)
C OPTIONAL FORMATS TO A TIME SHARING TERMINAL. IF DESIRED, THE
C READ STATEMENTS AT THE BEGINNING OF THE MAIN PROGRAM CAN BE
C MODIFIED TO ALLOW DATA INPUT DIRECTLY FROM THE TIME SHARING
C TERMINAL.
C
C THE CURRENT DIMENSIONS OF THE PROGRAM ALLOW A NETWORK WITH A
C MAXIMUM OF 100 NODES AND A MAXIMUM OF 99 ACTIVITIES BEGINNING
C AT EACH NODE. THESE LIMITS CAN BE EXPANDED BY CHANGING THE
C DIMENSIONS OF THE XINT AND VALUE ARRAYS.
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C INSTRUCTIONS FOR BUILDING DATA FILES
C -------------------------------------------------------
C
C DATA FILE DATAN.DAT
C
C THIS DATA FILE CONTAINS A DESCRIPTION OF THE NETWORK STRUCTURE.
C EACH NODE REQUIRES 4 RECORDS WITH A TOTAL OF 103 FIELDS:
C FIELD 1 IS THE BEGINNING NODE.
C FIELDS 2 THRU 100 ARE THE NUMBERS OF THE NODES AT WHICH THE
C ACTIVITIES WHICH BEGIN AT THE NODE IN FIELD 1 TERMINATE.
C FIELD 101 INDICATES WHETHER OR NOT THE NODE IS ON THE OUTPUT
C CRITICAL LIST.
C 1 = NODE IS ON THE OUTPUT CRITICAL LIST
C 0 -  NODE IS NOT ON THE OUTPUT CRITICAL LIST
C FIELD 102 INDICATES HOW MANY ACTIVITIES TERMINATE AT THE NODE
C INDICATED IN FIELD NUMBER 1.
C FIELD 103 INDICATES HOW MANY ACTIVITIES BEGIN AT THE NODE
INDI-
C GATED IN FIELD NUMBER 1.
C
C
C DATA FILE DATAH.DAT
C
C THIS DATA FILE CONTAINS A DESCRIPTION OF THE DISTRIBUTIONS OF
C EACH OF THE ACTIVITIES IN THE NETWORK.
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THERE ARE 7 FIELDS OF DATA.
FIELD 1 IS THE NODE NUMBER.
FIELD 2 IS THE NUMBER OF THE ACTIVITY COMING FROM THE NODE. 
FIELD 3 IS THE CODE FOR THE TYPE OF DISTRIBUTION.

1 = TRIANGULAR DISTRIBUTION
2 = NORMAL DISTRIBUTION
3 = EXPONENTIAL DISTRIBUTION
4 « GAMMA DISTRIBUTION
5 * BETA DISTRIBUTION
6 -  UNIFORM DISTRIBUTION 

FIELD 4 IS
MODE FOR A TRIANGULAR DISTRIBUTION.
MEAN FOR A NORMAL DISTRIBUTION.
MEAN FOR AN EXPONENTIAL DISTRIBUTION.
ALPHA FOR A GAMMA OR A BETA DISTRIBUTION.
1 /(B-A) FOR A UNIFORM DISTRIBUTION.

FIELD 5 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION.
FIELD 6 IS THE MINIMUM VALUE OF THE DISTRIBUTION.
FIELD 7 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.

DATA FILE CONTROL.DAT

THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL 
PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.

THERE ARE 4 FIELDS OF DATA.
FIELD 1 IS THE NUMBER OF NODES IN THE NETWORK.
FIELD 2 IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
FIELD 3 IS THE OUTPUT OPTION DESIRED FOR THE PART RESULTS.

1 = A DESCRIPTION OF EACH OF THE 10 CLASSES OF THE
FINAL DISTRIBUTION IN THE FORM OF Y -  B(O) + B(l ) X

2 = A CUMULATIVE DISTRIBUTION FUNCTION OF THE FINAL
DISTRIBUTION.

3 = A DISCRETE PROBABILITY DENSITY FUNCTION AND A
SIMULATION FREQUENCY HISTOGRAM IN GRAPHICAL FORMAT.

4 = A COMBINATION OF 1 AND 2 ABOVE.
5 = A COMBINATION OF 1 AND 3 ABOVE.
6 = A COMBINATION OF 2 AND 3 ABOVE.
7 = A COMBINATION OF 1, 2, AND 3 ABOVE.
8 = ONLY THE EXPECTED VALUE AND STANDARD DEVIATION. 

FIELD 4 IS THE NUMBER OF ITERATIONS OF THE MONTE CARLO 
SIMULATION REQUESTED (MAXIMUM -  10,000).

0 > NO MONTE CARLO SIMULATION IS REQUESTED.

NOTE

ALL UNUSED FIELDS MUST BE ZEROED OUT.

M A I N  P R O G R A M
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REAL*8 X I N T (101,100,12),VALUE(101,100,10,3),A(130)
REAL*8 ZVAL(130,5) ,XX( 100,2),TOTAAR(51)
REAL*8 SIMT(100,10000),SIMTOT(51)
R E A L * 8  A R E A ,A V G ,C O U N T ,S IG , S IZ E
* ,XDl,X02,XD3,XD4,X,XSIZE
* , d iff
REAL*4 HIGH,HLOW,PERCNT,KSCR20,KSCR10,KSCR05,XSCR02,KSCR01,DMAX 
INTEGER I, IEDN,ICOUNT, IACT, IFLAG, IOCL,IPRE,IPRINT,ISNODE

* , MM
* ,N,NACTS, NAN, NCL, NET, NETT, NSIM
* ,J ,J 1
* ,K ,K K
* , L,L1,L2,L3,LASTK,LASTMM,L3COUNT
DIMENSION NET(100,103),NETT(103),IOCL(100),IPRE(99,2)
COMMON/PARA1 /XINT,VALUE 
COMMON/PARA2/ZVAL 
COMMON/PARA3/A 
COMMON/PARA4/XX 
COMMON/PARA5/NET 
COMMON/PARA6/SIMT 
CHARACTER*1 K B L ,K B K  
DATA K B L /’ '/,KBM/’*’/
DATA NCL/0/
OPEN IN P U T  AND OUTPUT F IL E S

OPEN (UNIT *= 11, FILE » ’datan.daf)
OPEN (UNIT - 12, FILE - 'datah.dat')
OPEN (UNIT = 13, FILE = * control.dat *)
READ INFORMATION INTO DATA MATRICES.
READ (13,1900) N,NACTS,NAN,NSIM 
DO 0910 I = 1,N
READ (11,1901) (NETT(J), J - 1,103)
Ll ■ NETT(1)
DO 0900 K * 1,103 
NET(L1,K) * NETT(K)

0900 CONTINUE 
0910 CONTINUE

DO 0920 LOADS THE OUTPUT CRITICAL LIST ARRAY.
DO 0920 I =1,N 
IOCL(I) = NET(1,101)
NET(I,101) = 1 

0920 CONTINUE
DO 1010 READS DATA FROM DATAH AND LOADS THIS DATA INTO 
THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF 
THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A 
PIECEWISE POLYGONAL FUNCTION.
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DO 1010 I = 1,NACTS
READ (12,1902) L1,L2,XD1,XD2,XD3,XD4,XD5
VALUE(Ll,L2,1,3) = XD1
VALUE(Ll,L2,2,3) = XD2
VALUE (Ll, L2,3,3) = XD3
XINT(Ll,L2,1) s XD4
XINT(Ll,L2,2) « XD5
IF (IDINT(VALUE(Ll,L2,1,3)) .NE. 6) THEN 
CALL LINEAR (L1,L2,NCL)
GO TO 1010
DO 1000 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE 
FORM FOR SUBROUTINES SERIES AND PARA.
ELSE
XINT(Ll,L2,11) = XINT(L1,L2,2)
X - XINT(L1,L2,1)
XSIZE = (XINT(Ll,L2,2)-XINT(Ll,L2,l))/10.
DO 1000 J = 1,10
VALUE(Ll,L2,J, 1) * VALUE(Ll,L2,2,3)
XINT(L1,L2,J) * X 
X « X+XSIZE 

1000 CONTINUE 
END IF 

1010 CONTINUE
MONTE CARLO SIMULATION OF THE NETWORK.
IF (NSIM .EQ. 0) GO TO 1030 
CALL SIMULT (N,NSIM)
REDUCTION OF THE NETWORK BEGINS.
DO 1040 CHECKS IF A CONVOLUTION (SERIES-REDUCTION) OPERATION 
IS POSSIBLE, i.e., IF THERE EXISTS A NODE I NOT ON THE OUTPUT 
CRITICAL LIST SUCH THAT

IN-DEGREE NODE I = OUT-DEGREE NODE 1 = 1 .
1030 L3COUNT = 2 
1035 DO 1040 I=L3COUNT,N—1 

L3 = I
IF ((NET(I,102)+NET(I,103)) .EQ. 2 .AND. IOCL(I) .EQ. 0)

&GO TO 1050 
1040 CONTINUE

IF (IN-DEGREE NODE I + OUT-DEGREE NODE I) > 2 FOR ALL I NOT = 1 
OR N, NETWORK IS NONSEPARABLE, SO PROCEED TO "SEQUENTIAL 
APPROXIMATION"
IF (L3COUNT .EQ. 2) GO TO 1145 
GO TO 1080
A CONVOLUTION IS POSSIBLE WITH THE TWO ACTIVITIES, ONE OF WHICH 
TERMINATES AT NODE L3 AND THE OTHER OF WHICH STARTS AT NODE L3. 
DO 1060 IDENTIFIES THE STARTING NODE NUMBER AND THE ACTIVITY
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NUMBER OF THE ACTIVITY TERMINATING AT NODE L3. THEN THE SERIES 
SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES IS CONVOLUTED INTO 
AN EQUIVALENT ACTIVITY.

1050 DO 1060 I=1,L3-1
DO 1060 J=2,NET( 1,103)+1 
Ll * I 
L2 * J-l
IF (NET(I,J) .EQ. L3) GO TO 1070 

1060 CONTINUE
1070 CALL SERIES(Ll,L2,L3, 1)

NET(L1,L2+1) - NET(L3,2)
NET(L3,2) - 0 
NET(L3,101) - 0 
NET(L3,102) - 0 
NET(L3,103) - 0 
L3COUNT - L3+1
IF (L3COUNT .EQ. N) GO TO 1080 
GO TO 1035
DO 1140 CHECKS IF A MAXIMUM (PARALLEL-REDUCTION) OPERATION IS 
POSSIBLE, i.e., IF THERE EXIST TWO DIFFERENT ACTIVITIES, Al AND 
A2, SUCH THAT

STARTING NODE (Al) = STARTING NODE (A2), AND 
ENDING NODE (Al) - ENDING NODE (A2).

THEN THE PARALLEL SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES 
IS PARALLEL-REDUCED WITH A MAXIMUM OPERATION INTO AN EQUIVALENT 
ACTIVITY.

1080 DO 1140 1=1,N-l 
Ll = I

1085 DO 1090 J=2,NET(L1,103)
L2 = J-l
IF (NET(L1,J) .EQ. 0) GO TO 1140 
DO 1090 K=J+1,NET(L1,103)+1 
L3 = K-l
IF (NET(L1,J) .EQ. NET(Ll,K)) THEN 
IEDN » NET(L1,J)
GO TO 1110 
ELSE
GO TO 1090 
END IF 

1090 CONTINUE
GO TO 1140 

1110 CALL PARA(L1,L2,L3)
NET(L1,103) = NET(Ll,103)-1 
NET(IEDN,102) = NET(IEDN,102)-1 
DO 1120 K=L3,NET(L1,103)
NET(L1,K+1) = NET(Ll,K+2)
DO 1115 L=l,10
XINT(Ll,K,L)= XINT(Ll,K+l,L)
VALUE(Ll,K,L,1) = VALUE(Ll,K+l,L,1)
VALUE(L1,K,L,2) = VALUE(Ll,K+l,L,2)

1115 CONTINUE
XINT(Ll,K,11) = XINT(Ll,K+l,11)

1120 CONTINUE
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K -  NET(Ll,103)+l 
NET(Ll,K+l) = 0 
DO 1130 L * l,10 
XINT(L1,K,L) -  0.
VALUE(Ll,K,L,1) = 0.
VALUE(Ll,K,L,2) « 0.

1130 CONTINUE
XINT(L1,K,11) -  0.
GO TO 1085 

1140 CONTINUE
GO TO 1030

C
C THROUGH 1146 CHECKS IF THE NETWORK HAS BEEN SERIES-PARALLEL
C REDUCED TO A SINGLE EQUIVALENT ACTIVITY.
C

1145 IF (NET(1,103) .NE. 1) GO TO 1150
IF (NET(N,102) .NE. 1) GO TO 1150
DO 1146 1*2,N-l
IF (NET(I , 102) + NET(I , 103)) 1550,1146,1150

1146 CONTINUE
C
C THE NETWORK HAS BEEN SERIES-PARALLEL REDUCED TO A SINGLE EQUIVA-
C LENT PATH. DO 1147 LOADS THE DISTRIBUTION OF THIS PATH INTO THE
C 100TH ACTIVITY POSITION OF NODE N.
C

DO 1147 J= l,10
XINT(N,100,J) * XINT(1 ,1 ,J)
VALUE(N,100,J , l )  * VALUE(1 ,1 ,J , l )
VALUE(N,100,J , 2) = VALUE(1 ,1 ,J ,2  )

1147 CONTINUE
XINT(N,100,11) * XINT(1,1,11)
GO TO 1240

C
C DO 1220 REDUCES THE NONSEPARABLE NETWORK USING THE "SEQUENTIAL
C APPROXIMATION’ METHOD.
C

1150 DO 1220 1=2,N 
ICOUNT = 0
IF (NET(I,101)) 1550,1220,1155

C
C DO 1170 DETERMINES THE STARTING NODE NUMBER AND THE ACTIVITY
C NUMBER OF ALL THE ACTIVITIES WHICH TERMINATE AT NODE I > STARTING
C NODE.
C

1155 DO 1170 J -1 ,I -1
IF (NET(J,101)) 1550,1170,1160 

1160 DO 1169 Jl=2,N ET(J,103)+l
IF (NET(J,J1) -  I)  1169,1165,1169 

1165 ICOUNT = ICOUNT+1 
IPRE(ICOUNT,1) * J  
IPRE(ICOUNT,2) = J l-1

1169 CONTINUE
1170 CONTINUE

C
C THROUGH 1220 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION
C THROUGH THE STARTING NODE OF THE ACTIVITY AND THE RESOURCE
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C CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH TERMINATES
C AT NODE I  AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
C
C IF THE FIRST STARTING NODE = NODE 1, THE CONVOLUTION IS EQUAL TO
C THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE I .
C

IF (IPRE(1,1) .EQ. 1) THEN 
IACT « IPRE(1,2)
DO 1175 J - l , 10
XINT(101 ,1 ,J) -  XINT(1 ,IACT,J)
VALUE(101 ,1 ,J , 1) -  VALUE(1 ,IACT,J,l)
VALUE(101 ,1 ,J , 2) -  VALUE(1 ,IACT,J,2)

1175 CONTINUE
XINT(101,1,11) -  XINT(1 ,IACT,11)

C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE FIRST STARTING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
ISNODE -  IPRE(1,1)
IACT -  IPRE(1,2)
DO 1180 J - l , 10
XINT(101 ,1 ,J) -  XINT(ISNODE,100,J)
VALUE(101,1,J,1) = VALUE(ISNODE,100,J , 1)
VALUE(101 ,1 ,J , 2) -  VALUE(ISNODE,100,J , 2)

1180 CONTINUE
XINT(101,1,11) = XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE FIRST ACTIVITY TERMINATING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1185 J - l , 10
XINT(101,2,J) -  XINT(ISNODE,IACT,J)
VALUE(101 ,2 ,J , 1) -  VALUE(ISNODE,IACT,J,l)
VALUE(101 ,2 ,J , 2) = VALUE(ISNODE,IACT,J,2)

1185 CONTINUE
XINT(101,2,11) -  XINT(ISNODE,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
END IF

C
C IF THERE IS ONLY ONE ACTIVITY TERMINATING AT NODE I ,  THE
DISTRIBUTION
C THROUGH NODE I  IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 100TH ACTIVITY POSITION OF NODE I .
C

IF (ICOUNT .EQ. 1) THEN 
DO 1190 J= l,10
XINT(I,100,J) = XINT(101,1 ,J)
VALUE(I,100,J , 1) = VALUE(101 ,1 ,J ,1 )
VALUE( I , 100,J , 2) = VALUE(101 ,1 ,J ,2 )

1190 CONTINUE
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XINT(I,100,11) * XINT(101,1,11)
C
C IF THERE ARE TWO OR MORE ACTIVITIES TERMINATING AT NODE I ,  LOAD
THE
C DISTRIBUTION THROUGH THE STARTING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1205 K=2,ICOUNT 
ISNODE = IPRE(K,1)
IACT « IPRE(K,2)
DO 1195 J= l,10
XINT(101,3,J) « XINT(ISNODE,100,J )
VALUE(101 ,3 ,J , 1) -  VALUE(ISNODE,100,J , l )
VALUE(101,3,J,2) -  VALUE(ISNODE,100,J , 2)

1195 CONTINUE
XINT(101,3,11) = XINT(ISNODE,100,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1200 J= l,10
XINT(101,4,J) -  XINT(ISNODE,IACT,J)
VALUE( 10 1 ,4 ,J ,1 ) -  VALUE(ISNODE,IACT,J,l)
VALUE(101,4,J,2) * VALUE(ISNODE,IACT,J,2)

1200 CONTINUE
XINT(101,4,11) = XINT(ISNODE, IACT,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

CALL PARA(101,1,3)
1205 CONTINUE

C
C THE DISTRIBUTION THROUGH NODE I  IS THE MAXIMUM IN TEMPORARY
LOCATION 1.
C LOAD THIS INTO THE 100TH ACTIVITY POSITION OF NODE I .
C

DO 1210 J= l,10
XINT(I,100,J) » XINT(101 ,1 ,J)
VALUE(I,100,J , l )  * VALUE(101,1 ,J ,1 )
VALUE(I ,100 ,J , 2) > VALUE(101,1,J ,2 )

1210 CONTINUE
XINT(I,100,11) = XINT(101,1,11)
END IF 

1220 CONTINUE
C
C THE DISTRIBUTION THROUGH NODE N IS THE FINAL EQUIVALENT ACTIVITY
OF THE
C NETWORK.
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c
1240 CONTINUE

C
C IF NODE I  IS ON THE OUTPUT CRITICAL LIST, DO 1385 PRESENTS THE
C DISTRIBUTION THROUGH NODE I IN THE OUTPUT.
C

DO 1385 I  -  2,N
IF (IOCL(I) .EQ. 0) GO TO 1385
PRINT 1910
L -  1
KK « 0
DO 1270 J  -  1,10

C
C THE XX ARRAY IS USED FOR HISTOGRAM AND CDF CALCULATIONS.
C

XX(1,1) -  XINT(I,100,J)
SIZE -  (XINT(I,100,2)-XINT(I,100 ,1)) /5 .
LASTK “ L+4 
DO 1250 K = L,LASTK 
KK -  KK+1
XX(K,2) -  VALUE(I,100,J,1)+(VALUE(I,100,J,2)*XX(K,1))
IF ((KK .LE. 1 ) .AND.(L .GT. 4)) XX(K,2) * ( ( (VALUE(I,100,J,2) 

S*XX(K,1))+VALUE(I,100,J,1))+(VALUE{I , 100,J - l , 2 )*XX(K,1))+
6VALUE(I , 100,J - l ,1 ) ) /2 .
XX(K+1,1) = XX(K,1)+SIZE 

1250 CONTINUE 
KK = 0 
L = L+5
IF ((NAN .EQ. 1 ) .OR.(NAN .EQ. 4 ) .OR.(NAN .EQ. 5 ) .OR.

&(NAN .EQ. 7)) GO TO 1260 
GO TO 1270 

1260 IF (I  .NE. N .AND. J  .EQ. 1) THEN 
PRINT 1920,1
ELSE IF (I  .EQ. N .AND. J  .EQ. 1) THEN 
PRINT 1925 
END IF
PRINT 1930,J,XINT(1,100,J),XINT(1,100, J + l)
PRINT 1940,VALUE(I , 100,J , 1 ),VALUE(I,100,J , 2)

1270 CONTINUE
XX(51,2)=VALUE(I,100,10,1)+VALUE(I,100,10,2)*XX(51,1)

C
C TOTAAR IS USED FOR CDF CALCULATIONS.
C

AREA > 0 .0  
DO 1280 J  = 1,50
AREA ~ AREA+((XX(J,2)+XX(J+l,2 ) )*SIZE*.5)
TOTAAR(J ) = AREA 

1280 CONTINUE
AREA > 1.0/AREA 
DO 1290 J  « 1,50 
TOTAAR(J ) = TOTAAR(J )*AREA 

1290 CONTINUE
DO 1295 J  = 51 ,2 ,-1  
TOTAAR(J ) = TOTAAR(J-l)

1295 CONTINUE
TOTAAR(1) = 0.0
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XX(1,1) = XINT(I,100,1)
IF ((NAM .EQ. 2 ) .OR.(NAN .EQ. 4 ) .OR.(NAN .EQ. 6 ) .OR.

6 (NAN .EQ. 7)) GO TO 1300 
GO TO 1320 

1300 PRINT 1910 
PRINT 1950 
DO 1310 J  = 1,51 
PRINT 1960,XX(J,1),TOTAAR(J)

1310 CONTINUE
1320 IF ((NAN .EQ. 3 ) .OR. (NAN .EQ. 5 ) .OR.(NAN .EQ. 6 ) .OR. 

ft(NAN .EQ. 7)) GO TO 1330 
GO TO 1340 

1330 IPRINT = 51 
IFLAG * 0
OAT.T. PLOT ( IPRINT,KBL,KBN, IFLAG)

1340 CONTINUE

DO 1360 COMPUTES AN APPROXIMATED EXPECTED VALUE AND 
DO 1370 COMPUTES AN APPROXIMATED STANDARD DEVIATION 
USING GROUPED DATA.

AVG = 0 .0
SIG = 0 .0
LASTMM = IPRINT-1
DO 1360 MM = 1 ,LASTMM
AVG = AVG+( (XX(MM, 1 ) + (SIZE/2 .) ) *(TOTAAR(MM+l )-TOTAAR(MM)) ) 

1360 CONTINUE
DO 1370 MM = 1 ,LASTMM
SIG = SIG+(( (XX(MM,l)+(SIZE/2.)-AVG)* *2)*(TOTAAR(MM+1) — 

STOTAAR(MM)))
1370 CONTINUE

SIG = DSQRT(SIG)
PRINT 1910
PRINT 1970,AVG,SIG
DO 1380 MM = 1,4
HLOW = AVG—(FLOAT(MM)*SIG)
HIGH = AVG+(FLOAT(MM)*SIG)

IT IS ASSUMED THAT THE DISTRIBUTION THROUGH NODE I RESEMBLES 
A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO 
1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE 
EXPECTED VALUE.

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT = 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
IF (I  .NE. N) THEN 
PRINT 1980,I,HLOW,HIGH,PERCNT 
ELSE
PRINT 1985,HLOW,HIGH,PERCNT 
END IF 

1380 CONTINUE 
1385 CONTINUE

IF (NSIM .EQ. 0) GO TO 1540
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DO 1510 COMPILES OUTPUT FROM THE MONTE CARLO SIMULATION FOR EACH 
NODE ON THE OUTPUT CRITICAL LIST.

DO 1510 1=2,N
IF (IOCL(I) .EQ. 0) GO TO 1510

DO 1390 COMPUTES THE PARTITION OF THE INTERVAL OVER WHICH THE 
THROUGHPUT DISTRIBUTION THROUGH NODE I IS DEFINED.

XX(1,1) = XINT(I,100,1)
SIZE = (XINT(I,100,2)—XINT(I,100,1)) /5 .
DO 1390 J= 2 ,51 
XX(J,1) = XX(J—1 ,1 )+SIZE 

1390 CONTINUE

DO 1410 COMPILES THE CUMULATIVE DISTRIBUTION FUNCTION.

COUNT * 0.0 
SIMTOT(l) = 0.0 
DO 1410 J=1,50 
DO 1400 K=1, NSIM
IF ((XX(J,1) .LE. SIMT(I,K)) .AND. (SIMT(I,K) .LT. XX(J+1,1)))

&COUNT = COUNT+1.
1400 CONTINUE

XX(J+1,2) = COUNT/DFLOAT(NSIM)
SIMTOT(J+l) = SIMTOT(J )+XX(J + l ,2)
COUNT = 0 .0  

1410 CONTINUE
PRINT 1910 
IF (I  .NE. N) THEN 
PRINT 1921,1 
ELSE
PRINT 1926 
END IF
IF ((NAN .EQ. 2) .OR. (NAN .EQ. 4) .OR. (NAN .EQ. 6) .OR.

6(NAN .EQ. 7)) GO TO 1420 
GO TO 1440 

1420 PRINT 1950
DO 1430 J= l, 51
PRINT 1960,XX(J,1 ) ,SIMTOT(J)

1430 CONTINUE
1440 IF ((NAN .EQ. 3) .OR. (NAN .EQ. 5) .OR. (NAN .EQ. 6) .OR. 

fc(NAN .EQ. 7)) GO TO 1450 
GO TO 1470 

1450 DO 1460 J= l, 50
XX(J,1) = XX(J,1)+(SIZE/2.)
XX(J,2) = XX(J+1,2)

1460 CONTINUE
IPRINT = 50 
IFLAG = 1
CALL PLOT (IPRINT,KBL,KBM,IFLAG)

1470 CONTINUE

DO 1480 COMPUTES AN APPROXIMATED EXPECTED VALUE AND 
DO 1490 COMPUTES AN APPROXIMATED STANDARD DEVIATION 
USING GROUPED DATA.
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c
AVG = 0.0 
SIG = 0 .0  
DO 1480 J = l ,50
AVG = AVG+(XX(J,1)*(SIMTOT(J+l)—SIHTOT(J)))

1480 CONTINUE
DO 1490 J = l ,50
SIG -  SIG+(( (XX(J,l)-AVG)**2)*(SIMTOT(J+l)-SIMTOT(J)))

1490 CONTINUE
SIG = DSQRT(SIG)
PRINT 1910
PRINT 1970,AVG,SIG
DO 1500 MM=1,4
HLOW = AVG-(FLOAT(MM)*SIG)
HIGH = AVG+(FLOAT(MM)*SIG)

C
C IT IS ASSUMED THAT THE DISTRIBUTION THROUGH NODE I  RESEMBLES
C A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO
C 1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE
C EXPECTED VALUE.
C

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT = 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
IF (I  .NE. N) THEN 
PRINT 1980,I,HLOW,HIGH,PERCNT 
ELSE
PRINT 1985,HLOW,HIGH,PERCNT 
END IF 

1500 CONTINUE 
1510 CONTINUE

COMPARE POLYGONAL APPROXIMATION OF THROUGHPUT DISTRIBUTION 
WITH SIMULATED THROUGHPUT DISTRIBUTION USING THE KOLMOGOROV- 
SMIRNOV ONE-SAMPLE TEST.

KSCR20 = 1.0730/SQRT(50.)
KSCR10 = 1.2239/SQRT(50.)
KSCR05 = 1 .3581/SQRT(50.)
KSCR02 = 1.5174/SQRT(50.)
KSCR01 = 1 .6276/SQRT(50.)

COMPUTE THE K-S TEST STATISTIC D-MAX.

DMAX = 0 .0  
DO 1530 I  = 2,51 
DIFF » DABS(SIMTOT(I )-TOTAAR (I ))
IF (DIFF .GT. DMAX) DMAX = DIFF 

1530 CONTINUE
PRINT 1910 
PRINT 1991,DMAX
PRINT 1992,KSCR2 0 ,KSCR10 ,KSCR0 5 ,KSCR0 2 ,KSCR01 
IF (DMAX .LE. KSCR05) PRINT 1993 

1540 STOP 
1550 PRINT 1990
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STOP

FORMAT STATEMENTS

1900 FORMAT (1 3 ,IX ,1 4 ,IX ,I I , IX,15)
1901 FORMAT (3 (12 ,25(IX,1 2 )/) ,1 2 ,2 1 (IX ,1 2 ) ,IX ,I I ,2 (IX ,12))
1902 FORMAT (2 (1 2 ,IX ),F1.0 ,4 ( IX,F8.2 ))
1910 FORMAT (1H1)
1920 FORMAT (IX,'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION', 

S' THROUGH NODE’ , IX,12 ,I X , 'I S : ' / / / )
1921 FORMAT (IX,'THE SIMULATED TIME DISTRIBUTION',

S' THROUGH NODE', IX ,12 ,I X , 'I S : ' / / / )
1925 FORMAT (IX,'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION', 

S' THROUGH THE PROJECT IS : ' / / / )
1926 FORMAT (IX,'THE SIMULATED TIME DISTRIBUTION',

S' THROUGH THE PROJECT IS : ' / / / )
1930 FORMAT (IX,'INTERVAL',1 3 ,4X,'LOWER LIMIT = ',F 8 .2 ,3X ,

&'UPPER LIMIT * ',F 8 .2  / / )
1940 FORMAT (15X,'X -  ( ' ,F 1 2 .8 , ')  + ( ' ,F 1 2 .8 , ')  T' / / / )
1950 FORMAT (14X,'CUMULATIVE DISTRIBUTION FUNCTION' / /

S21X ,'T ', 14X ,'F(T)')
1960 FORMAT (16X,F9.3,F17.8)
1970 FORMAT (12X,'EXPECTED VALUE OF T = ',F13 .8  /

S12X,'STANDARD DEVIATION OF T = ',F 1 3 .8  / / )
1980 FORMAT (IX,'THE PROBABILITY OF NODE ', 1 3 , '  THROUGHPUT TIME',

S' FALLING BETWEEN' /  1X ,F8.3,' TIME UNITS AND',F8.3,
S' TIME UNITS IS ABOUT ',F 5 .2 , ' % . '/ / )

1985 FORMAT (IX,'THE PROBABILITY OF THE PROJECT THROUGHPUT TIME',
S' FALLING BETWEEN' /  1X ,F8.3,' TIME UNITS AND ’ ,F8 .3 ,
S' TIME UNITS IS ABOUT ',F 5 .2 , ' % . '/ / )

1990 FORMAT (IX,'PROGRAM STOPPED' /  IX,'IMPROPER NODE NUMBER(S) '
S,'ENCOUNTERED')

1991 FORMAT (IX ,'KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST COMPARISON OF ’ ,
S’POLYGONAL APPROXIMATION' /  IX,'OF NETWORK THROUGHPUT DISTRIBUTION 
S AND SIMULATED NETWORK THROUGHPUT' /  IX,'DISTRIBUTION:' / /
SIX,'K-S TEST STATISTIC D-MAX = ' ,  F6.4 /)

1992 FORMAT (IX,'K-S CRITICAL VALUES:' /  15X,'20 PERCENT = ',F 6 .4  /  
S15X,'10 PERCENT * ',F 6 .4  /  16X,'5 PERCENT = ',F 6 .4  /
S16X,'2 PERCENT * ',F 6 .4  / 16X ,'l PERCENT = ',F 6 .4  /)

1993 FORMAT (IX,'FAIL TO REJECT THE NULL HYPOTHESIS THAT THE ' ,
S'DISTRIBUTIONS ARE THE SAME' /  IX, 'AT THE 5% LEVEL OF ' ,
S ' STATISTICAL SIGNIFICANCE. ' )
END
END MAIN PROGRAM

S U B R O U T I N E  P A R A

SUBROUTINE PARA (L1,L2,L3)
REAL*8 VALUE(101,100,10,3),XINT(101,100,12) 
REAL*8 XVAL,ZVAL(130,5),PAR(2,15,6),FACT,B(130) 
REAL*4 Z
INTEGER L1,L2,L3,NV1,NV2
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INTEGER K4(2,30)
INTEGER I,IINT,N,NCL,J,K,K3,L6,LASTJ,LASTK 
COMMON/PARA1/XINT,VALUE 
COMMON/ PARA2/ ZVAL 
COMMON/PARA3/B

C
C SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE
C EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP
C F(X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.
C

NVl « 10 
NV2 *= 10 
DO 2020 N = 1,2 
L6 * L2
IF (N .EQ. 2) L6 = L3 
FACT * 0
DO 2010 J  = 1,10 
B(1) = XINT(Ll,L6,J)

C
C DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X)
C INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS
C CUMULATIVE DISTRIBUTION CAP F(X).
C

DO 2000 I  * 1,2
XV AL = VALUE(L l,L6, J , I )
Z = FLOAT(I )
PAR(N,J,1+1) = XVAL/Z
PAR(N,J, 1) * PAR(N,J,l) + ((-1.0)*(XVAL/Z)*(B (1)**I))
K4(N,J) = 1+1 

2000 CONTINUE
IF (J .GT. 1) PAR(N,J ,1) = PAR(N, J ,1 )+FACT 
FACT = PAR(N,J,1)+(PAR(N,J,2 )*XINT(Ll,L6, J + l) )+(PAR(N,J,3) 

&*(XINT(L1,L6,J+1)**2))
2010 CONTINUE 
2020 CONTINUE

C
C DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.
C

DO 2040 I  = 1,22
IF (I  .GT. 11) GO TO 2030
B (I) -  XINT(L l,L2, I )
GO TO 2040 

2030 B(I) > XINT(L l, L3,1-11)
2040 CONTINUE 

NCL * 21 
CALL SORT(NCL)

C
C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER—
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C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
C

IINT =• 0
LASTJ -  NCL+1
DO 2080 J  -  1 ,LASTJ
IF ( (XINT(L1,L2,1) .GE. XINT(Ll,L3,1)-0.001) .AND.

&(XINT(L l,L2,1) .LE. XINT(L1,L3,1)+0.001)) GO TO 2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(Ll,L2,l) .LE. XINT(L1,L3,1)+0.001) GO TO 2050 
IF (XINT(L1,L3,J+1) .GE. XINT(Ll,L2,1)-0.001) IINT -  J  
IF ( (XINT(L1,L3,J+1) .LE. 0.001)

&.OR. ( (XINT(L1,L2,1) .GE. XINT(Ll,L3,J+l)-0.001) 
ft.AND. (XINT(L1,L2,1) .LE. XINT(Ll,L3,J+l)+0.001)
&.AND. (XINT(L l, L3, J+2) .LE. 0 .001))) GO TO 2180 

GO TO 2080
2050 IF (XINT(L l ,L2, J+ l) .GE. XINT(L1,L3,1)-0.001) IINT * J  

IF ( (XINT(L1,L2,J+1) .LE. 0.001)
S.OR. ( ( XINT(L1,L3, 1) .GE. XINT(L1,L2, J + l)-0.001)
&.AND. (XINT(Ll,L3,1) .LE. XINT(L1,L2, J + l)+0.001) 
ft .AND. (XINT(L1,L2, J+2) .LE. 0 .001))) GO TO 2160 

GO TO 2080 
2060 LASTK -  NCL-(IINT-l)

DO 2070 K * 1 ,LASTK 
B(K) = B(K+IINT)
B(K+IINT) = 0 

2070 CONTINUE
GO TO 2090 

2080 CONTINUE 
2090 NCL = NCL-IINT

C
C DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE
C EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED
C BETWEEN THE TWO ARCS.
C

N1 -  0 
N2 = 0
DO 2150 I = 1,NCL 
DO 2110 J  » 1,11

C
C DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION
C THAT ARE VALID FOR THE B (I) VALUE BEING CONSIDERED. Nl AND
C N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.
C

IF (Nl .GE. 1) GO TO 2100
IF ( ( (B (I) .GE. XINT(Ll,L2, J ) —0.001) .AND. (B(I+1)

&.LE. XINT(Ll,L2, J+ l)+ 0 .001)) .OR. (XINT(L1,L2,J+l) .LE. 0.001)) 
&N1 * J  

2100 CONTINUE
IF (N2 .GE. 1) GO TO 2110
IF ( ( (B (I) .GE. XINT(Ll,L3, J ) —0.001) .AND. (B(I+1) 

fi.LE. XINT(L1,L3,J+l)+0.001)) .OR. (XINT(L1,L3,J+l) .LE. 0.001)) 
&N2 * J  

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) = 1 
IF (Nl .GT. NV1) K4(1,N1) = 1
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DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR 
CAP F(X) AND CAP G(X).

LASTJ -  K4(2,N2)
LASTK -  K4(1,N1)
DO 2130 J  = 1 ,LASTJ 
DO 2120 K =- 1 ,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) -  1
IF (Nl .GT. NV1) PAR(1,Nl,K) « 1
K3 -  J+K-l
ZVAL(I,K3) * ZVAL(I,K3)+(PAR(1,N1,K)*PAR(2,N2,J))

2120 CONTINUE 
2130 CONTINUE

DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE 
MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A 
LITTLE H(X) FOR THAT PRODUCT.

DO 2140 J  = 1,4
ZVAL(I,J) “ ZVAL( I , J + l)*FLOAT(J )
ZVAL(I,J+l) -  0 

2140 CONTINUE 
Nl * 0 
N2 = 0 

2150 CONTINUE

LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE RESULTS OF THE 
PARALLEL REDUCTION WITH THE B(O) AND B(l) FORM IN EACH OF 10 
CLASSES.

VALUE(L l , L2,1 ,3 ) = 99.
CALL LINEAR(L1,L2,NCL)
GO TO 2180 

2160 DO 2170 I = 1,10
VALUE(L1,L2,1,1) -  VALUE(Ll,L3,I,1)
VALUE(L l ,L2, I ,2) -  VALUE(L1,L3,1,2)
XINT(L l, L2, I ) = XINT(L1,L3,I)

2170 CONTINUE
XINT(L1,L2 ,11) « XINT(Ll,L3,11)

2180 VALUE(L l ,L2,1 ,3) = 0 
DO 2210 I = 1,2 
DO 2200 J  = 1,10 
DO 2190 K -  1,3 
PAR(I,J,K) * 0 

2190 CONTINUE 
2200 CONTINUE 
2210 CONTINUE 

RETURN 
END
END SUBROUTINE PARA

S U B R O U T I N E S E R I E S
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SUBROUTINE SERIES (Ll,L2,L3,L4)
REAL*8 VALUE(101 ,100 ,10 ,3),XINT(101,100,12)
REAL*8 ZVAL(130,5),XLIM(2 ) ,A(130)
REAL*8 F0, F I , GO, G1, XL 
INTEGER Ll,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCLl,NE 
COMMON /  PARA1 /XINT, VALUE 
COMMON/PARA2/ ZVAL 
COMMON/PARA3/A

SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY 
DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE 
POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X).

THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE 
CONVOLUTION.

THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA. 

K * 0

DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION 
BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.

DO 3010 I * 1,12
IF ( (XINT(L3,L4,I) .LE. 0).AND.(I .GT. 1)) GO TO 3020 
DO 3000 J  = 1,12
IF ( ( XINT(L1,L2, J) .LE. 0).AND.(J .GT. 1)) NCL1 -  J-2 
IF ( (XINT(L1,L2,J) .LE. 0).AND.(J .GT. 1)) GO TO 3010 
K -  K+l
A(K) = XINT(L l,L2, J )+XINT(L3,L4, I )

3000 CONTINUE 
3010 CONTINUE 
3020 NINT = 1-2 

NCL = K-l

DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X) 
DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES 
CREATED BY COMBINING F(X) AND G(T-X) . DO 3100 IS CONTROLLED 
BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS 
ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY 
CLASS IN BOTH DISTRIBUTIONS.

CALL SORT (NCL)
DO 3120 K = 1,NCLl 
DO 3110 I = 1,NCL 
DO 3100 J  = 1,NINT 
IK = 0

THIS IF STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE 
INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K 
BEING CONTROLLED BY DO 3120.
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IF ( (A (I) .GE. XINT(Ll,L2,K)+XINT(L3,L4,J)-0.001) .AMD. (A(I+1) 
&.LE. XINT(L1,L2,K+1)+XINT(L3,L4,J+1)+0.001)) IK = J  

IF (IK .GE. 1) GO TO 3030 
GO TO 3100 

3030 ISEL(l) = 0 
ISEL(2) = 0

THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE 
UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER 
THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL 
IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.

IF (XINT(Ll,L2,K) .GE. (A( 1+1)-XINT(L3,L4, J + l )-0 .001)) GO TO 3040 
XLIM(l) = XINT(L3,L4,J+l)
ISEL(l) » 999 
GO TO 3050 

3040 XLIM(l) = XINT(Ll,L2,K)
3050 IF (XINT(L l, L2,K+1) .LE. (A(I)-XINT(L3,L4,J)+0.001)) GO TO 3060 

XLIM(2) = XINT(L3,L4,J)
ISEL(2) * 999 
GO TO 3070 

3060 XLIM(2) -  XINT(L1,L2,K+1)
3070 CONTINUE

DO 3090 NE -  1,2 
F0 = VALUE(Ll,L2,K,1)
FI -  VALUE(Ll,L2,K,2)
GO » VALUE(L3,L4,IK,1)
G1 » VALUE(L3,L4,IK,2)
XL = XLIM(NE)
Z = 1.0
IF (NE .EQ. 1) Z ■= -1 .0  
IF (ISEL(NE) .EQ. 999) GO TO 3080

THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE 
LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS 
BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE 
SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT 
IS BEING EVALUATED.

ZVAL(1 ,1) * ZVAL(I,l)+((F0*G0*XL)+((Fl*G0*XL**2)/2.) 
fi+((-1.0*Fl*Gl*XL**3)/3.) + ( (-1.0*F0*Gl*XL**2)/2.) )*Z 

ZVAL(1 ,2) -  ZVAL(I,2 )+ (((F1*G1*XL**2) / 2 . )+(F0*Gl*XL))*Z 
ZVAL(1 ,3) = ZVAL(I,3) + ( ( - 1 .0*F0*G1) / 2 . ) *Z 
GO TO 3090

THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL FOR LIMITS.
IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE 
OF THE DIFFERENT POLYNOMIAL CREATED WHEN THE INTEGRATION 
INVOLVES LIMITS IN THE FORM OF (T-X)

3080 ZVAL(1 ,1 ) = ZVAL(I,1 )+ ((—1 .0*F0*G0*XL)+((F1*G0*XL**2)/2 .)
S+((Fl*Gl*XL**3)/3.)+((-1.0*F0*Gl*XL**2)/2.))*Z 
ZVAL(1,2) = ZVAL(I,2)+((-1.0*F1*G0*XL)+(F0*G0)- 

&((F1*G1*XL**2)/2.))*Z 
ZVAL(1,3) = ZVAL(I , 3) + ( (Fl*G0)/2 . ) *Z 
ZVAL(1,4) = ZVAL(1,4) + ((Fl*Gl)/6. )*Z
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3090 CONTINUE 
3100 CONTINUE 
3110 CONTINUE 
3120 CONTINUE

LINEAR IS CALLED TO PIECEWISE POLYGONAL IZE THE CONVOLUTION 
RESULTS WITH THE B(0) AND B(l) FORM IN EACH 07 10 CLASSES.
VALUE(Ll,L2,l,3) = 99.
CALL LINEAR (L1,L2,NCL)
RETURN 
END
END SUBROUTINE SERIES

S U B R O U T I N E  P L O T

S U B R O U T IN E  P L O T  ( I P R I N T ,K B L , K B M ,  I  F L A G )
REAL*8 XX(1 0 0 ,2 ),SORT 
CHARACTER* 1 KBL,KBM,LINE( 101)
INTEGER I ,  I F L A G ,  IPRINT, J , JPLOT,K, NN 
COMMON/PARA4/XX

PLOT IS USED TO CREATE THE HISTOGRAM FOR FINAL OUTPUT. 
THE VARIABLE SORT IN THIS SUBROUTINE IS NOT RELATED TO 
THE SUBROUTINE SORT.

SORT * XX(1,2)
DO 4000 I  = 2 , IPRINT
IF (SORT .LE. XX(I/2)) SORT = XX(I,2)

4000 CONTINUE
PRINT 4900
IF ( IFLAG .EQ. 0) THEN
PRINT 4910
E L S E
PRINT 4915 
END IF
IF (SORT .GT. 0.5) PRINT 4920
IF ({SORT .GT. 0 .2 5 ).AND.(SORT .LE. 0 .50)) PRINT 4930
IF ((SORT .GT. 0 .1 0 ).AND.(SORT .LE. 0 .25)) PRINT 4940
IF ((SORT .GT. 0 .0 5 ).AND.(SORT .LE. 0 .10)) PRINT 4950
IF (SORT .LE. 0.05) PRINT 4960 
PRINT 4970
DO 4030 I  * 1 , IPRINT 
DO 4010 J  = 1,51 
LINE(J) = KBL 

4010 CONTINUE
IF (SORT .GT. 0.5) JPLOT = ( INT((XX(1,2)*50 . )+0.5))+1 
IF ((SORT .GT. 0 .2 5 ).AND.(SORT .LE. 0.50))

&JPLOT = ( INT((XX (1,2)*100.)+0.5))+1 
IF ((SORT .GT. 0 .1 0 ).AND.(SORT .LE. 0.25))

&JPLOT = (INT((XX(I,2)*200.)+0.5))+1 
IF ((SORT .GT. 0 .0 5 ).AND.(SORT .LE. 0.10))
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&JPI1OT “ (IHT( (XX( I,2 )*500 .) +0.5) )+l 
IF (SORT .LE. 0.05) JPLOT -  (INT((XX(1,2)*1000.0)+0.5 )) +1 
IF (JPLOT .LE. 0) JPLOT * 1 
IF (JPLOT .GT. 51) JPLOT * 51 
DO 4020 NN -  1 ,JPLOT 
LINE(NN) « KBM 

4020 CONTINUE
PRINT 4980,XX(I,1),(LINE(K), K ■ 1 ,JPLOT)

4030 CONTINUE
1

1 FORMAT STATEMENTS

4900 FORMAT ( 1H1)
4910 FORMAT (15X,'PROBABILITY DENSITY FUNCTION' / / )
4915 FORMAT (15X,'SIMULATION FREQUENCY HISTOGRAM' / / )
4920 FORMAT (9X,'0 .20 .40 .60 .80
4930 FORMAT (9X,'0 .10 .20 .30 .40
4940 FORMAT (9X,'0 .05 .10 .15 .20
4950 FORMAT (9X,'0 .02 .04 .06 .08
4960 FORMAT (9X,*0 .01 .02 .03 .04
4970 FORMAT ( 9X, ' I ------+------1------+_.— 1_. - I ------+—— X—
4980 FORMAT ( IX,F8.3 ,2X,51A1)

RETURN

1 . 0  • 

.50 ’ 

.25 ' 

.10  • 

.05 * 
- I*  )

END
END SUBROUTINE PLOT

S U B R O U T I N E  L I N E A R

SUBROUTINE LINEAR (L1,L2,NCL)
REAL*8 VALUE(101,100,10,3),XINT(101,100,12),ZVAL(130,5),A( 130)
REAL*8 Q, Q1, Q2, STD, SUMX, SUMY, SUMXY, SUMSQ
R E A L * 8  A L P H A , A R E A , B E T A ,  F A C T ,  S I Z E ,  W ,X ,X L M B D A ,X M E A N

REAL*8 XMODE, XSIZE, Y
INTEGER Ll,L2
C O M M O N /P A R A l /X I N T , V A L U E
COMMON/ PARA2/ ZVAL
COMMON/PARA3/A
E X T E R N A L  DGAMMA

SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA 
FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH 
THE B(O) AND B (l) FORM IN EACH OF 10 CLASSES THROUGH THE USE 
OF SIMPLE LINEAR REGRESSION.

XMODE = VALUE(Ll,L2,2,3)
XMEAN = VALUE(Ll,L2,2,3)
STD « ((VALUE(Ll,L2,2,3)-XINT(Ll,L2,l))/3.)
XLMBDA = VALUE(L1,L2,2,3)-XINT(Ll ,L2 , 1)
ALPHA = VALUE(Ll,L2,2,3)
BETA = VALUE(Ll,L2,3,3)
SIZE = (XINT(Ll,L2,2)-XINT(Ll,L2,l))/10.
IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 99) SIZE = (A(NCL+1)-A(1))/10.
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X IN T ( L l , L 2 > 1 1 )  «  X I N T ( L 1 ,L 2 ,2 )
I F  ( I D I N T ( V A L U E ( L 1 , L 2 , 1 , 3 ) ) .E Q .  9 9 )  X I N T ( L l , L 2 , 1 1 )  =  A (N C L + 1 )
X *  X I N T ( L 1 ,L 2 , 1 )
I F  ( I D I N T ( V A L U E ( L 1 ,L 2 ,1 , 3 ) )  .E Q .  9 9 )  X -  A ( l )
DO 5 0 0 0  I  *  1 , 1 0  
X I N T ( L l , L 2 , I ) »  X 
X “  X + S IZ E  

5 0 0 0  C O N TIN U E
DO 5 0 5 0  I  -  1 , 1 0  
X =  X I N T ( L 1 , L 2 , I )
SUMY -  0 .
SUMX -  0 .
SUMXY =  0 .
SUMSQ -  0 .

C
C W CONTROLS THE NUMBER OF DATA P O IN T S  USED IN  THE R E G R E SS IO N
C C O M PU TA TIO N S.
C

W =  1 0 . + I D I N T ( S I Z E * 3 . )
X S IZ E  -  S I Z E /N  
L A S T J  -  ID IN T (W )
DO 5 0 4 0  J  “  1 , L A S T J
I F  ( I D I N T ( V A L U E ( L l ,L 2 , 1 , 3 ) )  .N E .  9 9 )  GO TO 5 0 3 0  
DO 5 0 1 0  K 3  =  1 ,N C L  
K =  0
I F  ( ( X  .G E .  A ( K 3 ) ) .A N D .(X  . L E .  A ( K 3 + 1 ) ) )  K =  K3 
I F  (K  .G E .  1 )  GO TO 5 0 2 0  

5 0 1 0  C O N TIN UE
C
C S E R IE S  OR PARA GENERATED D IS T R IB U T IO N S .
C

5 0 2 0  Y *  Z V A L (K ,1 )  +  ( Z V A L (K ,2 ) * X ) + ( Z V A L ( K ,3 ) * ( X * * 2 ) )  
f i + ( Z V A L ( K , 4 ) * ( X * * 3 ) )

5 0 3 0  C O N TIN UE
C
C TR IA N G U LA R  D IS T R IB U T IO N .
C

I F  ( I D I N T ( V A L U E ( L l , L 2 , l , 3 ) )  .E Q .  1 )  THEN
I F  ( X IN T ( L l , L 2 , 1 )  . L E .  X .A N D . X . L E .  XMODE) THEN
Y =  ( 2 . * ( X - X I N T ( L 1 , L 2 , 1 ) ) ) / ( ( X M O D E - X I N T ( L 1 , L 2 , 1 ) ) * 1 0 . * S I Z E )  
E L S E
Y =  ( 2 . * ( X I N T ( L l , L 2 , 1 1 ) - X ) ) / ( ( X I N T ( L l , L 2 , 1 1 ) -X M O D E )* 1 0 . * S I Z E ) 
END I F

C
C NORMAL D IS T R IB U T IO N .
C

E L S E  I F  ( I D I N T ( VA LU E( L l , L 2 , 1 , 3 ) )  .E Q .  2 )  THEN
Y -  ( l . / ( S T D * 2 . 5 0 6 6 2 8 2 7 5 ) ) * ( D E X P ( ( - 1 . 0 ) * ( ( ( X - X M E A N ) / S T D ) * * 2 ) / 2 . ) )

C
C E X PO N E N T IA L  D IS T R IB U T IO N  ( S H I F T E D ) .
C

E L S E  I F  ( I D I N T ( V A L U E ( L l ,L 2 , 1 , 3 ) )  .E Q .  3 )  THEN
Y =  ( 1 . /X L M B D A )* ( D E X P (( - 1 . 0 ) * ( ( X - X I N T ( L l , L 2 , 1 ) ) /X L M B D A )) )

C
C GAMMA D IS T R IB U T IO N .
C
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E L S E  I F  ( I D I N T ( V A L U E ( L l ,L 2 , 1 , 3 ) )  .E Q .  4 )  THEN
Y =  ( 1 .  /(DGAMMA( A L PH A ) *  (B E T A * * A L P H A )) )  * D E X P (-X /B E T A )  * ( X * * ( A L P H A - 1 .  

*)>

B ETA  D IS T R IB U T IO N .

E L S E  I F  ( I D I N T ( V A L U E ( L 1 ,L 2 ,1 , 3 ) )  .E Q .  5 )  THEN
Y -  (DGAM M A(ALPHA+BETA) / (DGAMHA( A LPH A ) *DGAMM A(BETA) ) ) *

&( 1 . / ( 1 0 . ‘ S I Z E ) * * ( A L P H A + B E T A -2 . ) ) *
& ( ( X - X I N T ( L 1 , L 2 , 1 ) ) * * (A L P H A -1 . ) ) *
6 ( ( X I N T ( L l , L 2 , 1 1 ) - X ) * * ( B E T A - 1 . ) )

END I F
I F  (Y  . L T .  0 )  Y =  0  
SUMX “  SUMX+X 
SUMY -  SUMY+Y 
SUMXY -  SU M X Y +(X *Y )
SUMSQ -  SUM SQ+( X* * 2 )
X -  X+XSIZE 

5 0 4 0  CONTINUE
V A LU E( L l , L 2 , I , 2 )  *= (SUMXY—( (SUMX*SUMY) /W ) ) / (SU M SQ —( ( SUM X** 2  ) /W ) ) 
V A LU E( L l , L 2 , 1 , 1 )  -  ( S U M Y /W )- (V A L U E (L l ,L 2 ,  1 , 2 ) * ( S U M X /W ))

5 0 5 0  CONTINUE

DO 5 0 6 0  CALCULATES THE AREA UNDER THE APPRO XIM A TED D IS T R IB U T IO N . 
AN ADJUSTMENT FA CTO R FO R THE AMOUNT THAT T H IS  A R EA  HAS B EEN  
UNDERESTIM ATED OR O V ERESTIM A TED I S  THEREBY D E T E R M IN E D .

DO 5 0 6 0  I  -  1 , 1 0
Q *  X I N T ( L 1 , L 2 , I + 1 ) - X I N T ( L 1 , L 2 , I )
Q1 *  (XINT(Ll , L 2 , 1 ) ‘VALUE ( L l , L 2  , 1 , 2 ) )  4-VALUE ( Ll , L 2  , 1 , 1 )
Q2 =  ( X I N T ( L l , L 2 , 1 + 1 ) * V A L U E ( L 1 ,L 2 , I , 2 ) ) + V A L U E ( L l ,L 2 ,1 , 1 )
I F  (Q 1 . L T .  0 . )  VALUE ( L l ,  L 2 , 1 , 1 )  =  VALUE ( L l  , L 2  ,  1 , 1  ) +  ( Q l *  ( - 1 . 0  ) )
I F  (Q 2  . L T .  0 . )  V A L U E ( L l , L 2 , 1 , 1 )  *  V A L U E ( L l , L 2 , I , 1 ) + ( Q 2 * ( —1 . 0 ) )
I F  (Q 1  . L T .  0 . )  Q 1 -  0 .
I F  (Q 2  . L T .  0 . )  Q 2  -  0 .
AREA =  A R E A + (( Q 1 + Q 2 ) * Q * 0 . 5 )

5 0 6 0  CONTINUE
FA CT =  1 . 0 /A R E A

C
C  DO 5 0 7 0  A D JU S T S T H E  C O E F F IC IE N T S  OF ALL THE L IN E A R  POLYNOM IAL
C  P IE C E S  BY THE FA CTO R COMPUTED IN  DO 5 0 6 0  IN  ORDER TO NORM ALIZE
C  THE AREA BACK TO O N E . T H IS  A C TS TO REDUCE ACCUM ULATING ER R O R S
C  DU RING PROGRAM C O M PU T A T IO N S.
C

DO 5 0 7 0  I  *  1 , 1 0
V A L U E ( L 1 ,L 2 ,1 , 1 )  =  VA LU E( L l , L 2 , 1 , 1 ) *FACT 
V A L U E ( L 1 ,L 2 , I , 2 )  =  V A L U E ( L l ,L 2 ,1 , 2 ) *FACT 

5 0 7 0  CONTINUE 
AREA =  0
DO 5 0 8 0  I  =  1 , 1 3 0  
A ( I ) =  0
ZV A L( 1 , 1 )  =  0 
ZV A L( 1 , 2 )  =  0  
ZV A L( 1 , 3 )  =  0  
ZV A L( 1 , 4 )  = 0  

5 0 8 0  CONTINUE
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RETURN
END
END SUBROUTINE LINEAR

S U B R O U T I N E  S O R T

SUBROUTINE SO R T  (N C L )
R E A L *8 A ( 1 3 0 ) , B  
IN TEG ER  NCL 
IN TEG ER  I / K l  
COMMON/PARA3 /  A

SUBROUTINE SO R T I S  USED TO CONDUCT AN A LG EB R A IC  SO RT OF DATA 
CREATED IN  THE S E R IE S  AND PARA S U B R O U T IN E S.

6 0 0 0  K1 »  0
DO 6 0 1 0  I  =  1 ,N C L
IF ( (A(I) .LT. (A(I+1)+.01)) .AND. ( A (I) .GT. (A(1+ 1)-.01))) 

&GO TO 6020 
IF (A (I) .LT. A( 1+1)) GO TO 6010 
IF (A (I) .GT. A(1+1)) B -  A (I)
A ( I ) -  A ( I + 1 )
A ( 1 + 1 )  =  B 
K l - K l + 1  

6 0 1 0  CONTINUE
I F  ( K l  .G E .  1 )  GO TO 6 0 0 0  
GO TO  6 0 4 0  

6 0 2 0  NCL *  N C L -1
L A S T J  =  N C L +1 
DO 6 0 3 0  J  *  I ,L A S T J  
A ( J )  *  A ( J + l )
A ( J + l ) =  0 

6 0 3 0  CONTINUE
GO T O  6 0 0 0  

6 0 4 0  RETURN 
END
END SU BROUTINE SORT

S U B R O U T I N E  S I M U L T

SUBROUTINE SIMULT (N,NSIM)
REAL*8 XINT(101,100,12),VALUE(101,100,10, 3)
REAL*8 T(100,9 9 ) ,SIMT(100,10000)
REAL * 8 ALPHA, BETA, X, XLNGTH, XLMBDA, XMAX, XME AN, XMIN, XMODE 
REAL*8 RN, STD, TTEMP, TMAX 
DIMENSION NET(100,103)
INTEGER ISEED,ISIM,N,NDIST,NSIM 
COMMON/ PARA1/XINT,VALUE
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COMMON/ P A R A 5 /N E T  
COMMON/PARA6 / S IM T
EXTERNAL DRNUN, DRNNOR, DRNEXP,  DRNGAM, DRNBET ,  R N S E T

DO 7 1 3 0  GENERATES A SIM ULATED NETWORK THROUGHPUT FO R  EACH O F  
N S IM  IT E R A T IO N S  OF THE MONTE CARLO SIM U L A T IO N  O F  THE NETWORK.

IS E E D  -  1 2 3 4 5 6 7 8 9  
CALL R N S E T (IS E E D )
DO 7 1 3 0  I S I M « 1 ,N S I M

DO 7 0 8 0  GENERATES A RANDOM VALUE FROM T H E A C T IV IT Y  RESOURCE 
CONSUM PTION (A C T IV IT Y  T IM E ) D IS T R IB U T IO N  OF EACH A C T IV IT Y .

DO 7 0 8 0  I “ 1 , N - 1  
DO 7 0 7 0  J * 1 , N E T ( I , 1 0 3 )
N D IS T  =  I D I N T ( VALUE( I ,  J ,  1 ,  3 ) )
XMIN -  X I N T ( I , J , 1 )
XMAX -  X IN T(I,J,11)
XLNGTH -  XMAX—XMIN
GO TO ( 7 0 1 0 , 7 0 2 0 , 7 0 3 0 , 7 0 4 0 , 7 0 5 0 , 7 0 6 0 )  N D IS T

TRIANGULAR D IS T R IB U T IO N .

7 0 1 0  CALL DRNUN( 1 , R N )
XMODE «  V A L U E ( I , J , 2 , 3 )
X =  (X M O D E -X M IN )/X LN G T H  
I F  (RN .G T .  X ) GO TO 7 0 1 5
T ( I ,  J )  =  X M IN +D SQ R T(R N *X LN G TH *(X M O D E-X M IN ) )
GO TO 7 0 7 0

7 0 1 5  T ( I ,  J )  ■  XMAX—DSQRT ( XLNGTH * ( XMAX-XMODE) * ( 1 .  - R N ) )
GO TO 7 0 7 0

NORMAL D IS T R IB U T IO N .

7 0 2 0  CALL DRNNOR( 1 ,R N )
XMEAN “  VA LU E( I , J , 2 , 3 )
STD -  ( XMEAN—X M IN ) / 3 .
T ( I , J )  =  (R N *STD )+X M E A N
I F  ( ( T (  I , J )  . L T .  X M IN ) .O R . ( T ( I , J )  .G T . XM AX)) GO TO 7 0 2 0  
GO TO 7 0 7 0

EX PO N EN TIA L D IS T R IB U T IO N .

7 0 3 0  CALL D R N EX P( 1 ,R N )
XLMBDA «  V A L U E ( I , J , 2 , 3 ) -X M IN  
T ( I ,  J )  -  ( XLMBDA*RN) +XM IN 
I F  ( T ( I , J )  .G T .  XMAX) GO TO 7 0 3 0  
GO TO 7 0 7 0

GAMMA D IS T R IB U T IO N .

7 0 4 0  ALPHA =  V A L U E ( I , J , 2 , 3 )
BETA = V A LU E( I , J , 3 , 3 )
CALL DRNGAM( 1 , A L PH A ,R N )
T ( I , J )  =  BETA *RN
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I F  ( T ( I , J )  .G T .  XMAX) GO TO 7 0 4 0  
GO TO 7 0 7 0

BETA DISTRIBUTION.

7 0 5 0  ALPHA * VALUE(I,J , 2 , 3 )
BETA -  V A L U E ( I , J , 3 , 3 )
CALL D R N B E T (1 ,A L P H A ,B E T A ,R N )
T (I ,J )  = XMIN+(XLNGTH*RN)
GO TO 7 0 7 0

UNIFORM DISTRIBUTION.

7 0 6 0  CALL D R N U N (1 ,R N )
T (I ,J )  “ XMIN+(XLNGTH*RN)

7 0 7 0  CONTINUE 
7 0 8 0  CONTINUE

DO 7 1 2 0  GENERATES THE C R IT IC A L  PATH TO EACH N O D E. THE 
SIM ULATED T IM E  THROUGH NODE I  FROM SIM U L A T IO N  IT E R A T IO N  L  
I S  STORED I N  S I M T ( I , L ) .

SIMT( 1 , ISIM) = * 0 . 0  
DO 7 1 2 0  1 = 2 , N 
TMAX = 0 . 0

DO 7 1 1 0  D ETER M IN ES THE STA R TIN G  NODES AND THE A C T I V I T I E S  WHICH 
TERM INATE A T NODE I  >  ST A R T IN G  N O D E S, AND COM PUTES TH E SIM ULATED 
THROUGHPUT VALUE THROUGH NODE I  A S  THE MAXIMUM OF THE 

[(T H R O U G H PU T  VALUE THROUGH S T A R T IN G  NO DE) +
(A C T IV IT Y  VALUE FROM ST A R T IN G  NODE TO NODE I ) ] .

DO 7 1 1 0  J = 1 , 1 - 1  
DO 7 1 0 0  J l = 2 , N E T ( J , 1 0 3 ) + 1  
I F  ( N E T ( J , J 1 ) - I )  7 1 0 0 , 7 0 9 0 , 7 1 0 0  

7 0 9 0  TTEM P =  S I M T ( J , I S I M ) + T ( J , J l - 1 )
I F  (TTEM P . L T .  TMAX) GO TO 7 1 0 0  
TMAX =  TTEM P 

7 1 0 0  CONTINUE 
7 1 1 0  CONTINUE

S I M T ( I , I S I M )  =  TMAX 
7 1 2 0  CONTINUE 
7 1 3 0  CONTINUE 

RETURN 
END

C END SU B R O U TIN E SIM U LT
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c 
c
C POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE
C (PART)
C ALGORITHM
C TO APPROXIM ATE C R IT IC A L IT Y  IN D IC E S
C OF
C A C T IV IT IE S  AND NO DES
C AND
C TO ID E N T IF Y  THE K MOST
C STO CH A STICA LLY  D O M IN A TIN G  PATHS
C OF
C A C Y C L IC , D IR E C T E D  NETWORKS
C U S IN G
C 'S E Q U E N T IA L  A PPR O X IM A TIO N " METHOD
C
c
C T H IS  PROGRAM A PPR O X IM A TES THE C R IT IC A L IT Y  IN D IC E S  OF THE
A C T IV IT IE S
C AND NODES O F  AN A C Y C L IC , D IR EC TED  NETWORK AND I D E N T I F I E S  THE N E T -
C W O R K 'S  K MOST STOCH A STICA LLY  DOM INATING PA T H S W ITH  THE PART
ALGORITHM
C U S IN G  'S E Q U E N T IA L  A P P R O X IM A T IO N ." THE PROGRAM I S  W RITTEN IN
FORTRAN
C 7 7  AND I S  PR E S E N T L Y  DESIG NED TO BE OPERATED IN  A  T IM E  SH ARING MODE
C W ITH A LL DATA IN P U T  FROM THREE ( 3 )  DATA F I L E S .  THE PROGRAM
D IR E C T S
C OUTPUT TO A  T IM E  SH A R IN G  TER M IN A L. I F  D E S IR E D , THE READ
STATEMENTS
C A T THE B E G IN N IN G  OF THE MAIN PROGRAM CAN BE M O D IF IE D  TO ALLOW DATA
C IN P U T  D IR E C T L Y  FROM THE TIM E SH ARING T E R M IN A L .
C
C THE CURRENT D IM E N S IO N S  OF THE PROGRAM ALLOW A  NETWORK W ITH A
C MAXIMUM OF 1 0 0  NODES AND A MAXIMUM OF 9 9  A C T I V I T I E S  B E G IN N IN G
C A T  EACH N O D E. T H E SE  L IM IT S  CAN BE EXPANDED BY CHANGING THE
C D IM E N SIO N S O F  THE X IN T  AND VALUE A R R A Y S.
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * *  * * * * * * * * * * *

c
C INSTRUCTIONS FOR BUILDING DATA FILES
C -------------------------------------------------------
C
C DATA F I L E  DA TA N .PA TH S
C
C THIS DATA FILE CONTAINS A DESCRIPTION OF THE NETWORK STRUCTURE.
C EACH NODE R E Q U IR E S  4  RECORDS W ITH A  TO TA L OF 1 0 3  F I E L D S :
C F IE L D  1 I S  THE B E G IN N IN G  NODE.
C F IE L D S  2  THRU 1 0 0  ARE THE NUMBERS OF THE NODES AT WHICH THE
C A C T I V I T I E S  WHICH B EG IN  AT THE NODE IN  F IE L D  1 TER M IN A T E .
C F IE L D  1 0 1  I S  A DUMMY F IE L D  AND SHOULD BE S E T  EQUAL TO 0  OR 1 .
C F IE L D  1 0 2  IN D IC A T E S  HOW MANY A C T I V I T I E S  TERM INATE AT THE NODE
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INDICATED IN FIELD NUMBER 1.
FIELD 103 INDICATES BOW MANY ACTIVITIES BEGIN AT THE NODE 

INDI—
C GATED IN FIELD NUMBER 1.
C RECORD 1 CONTAINS FIELDS 1-26; RECORD 2 CONTAINS FIELDS 27-52;
C RECORD 3 CONTAINS FIELDS 53-78; RECORD 4 CONTAINS FIELDS 79-103.
C
c
C DATA FILE DATAH. PATHS
C
C THIS DATA FILE CONTAINS DESCRIPTIONS OF THE PRECODED DISTRIBUTIONS
C OF ACTIVITY DURATION.
C
C THERE ARE 5 FIELDS OF DATA.
C FIELD 1 IS THE CODE FOR THE TYPE OF DISTRIBUTION.
C 1 - TRIANGULAR DISTRIBUTION
C 2 - NORMAL DISTRIBUTION
C 3 = EXPONENTIAL DISTRIBUTION
C 4 = GAMMA DISTRIBUTION
C 5 = BETA DISTRIBUTION
C 6 = UNIFORM DISTRIBUTION
C FIELD 2 IS
C MODE FOR A TRIANGULAR DISTRIBUTION.
C  M EA N  F O R  A  N O R M A L D I S T R I B U T I O N .
C MEAN FOR AN EXPONENTIAL DISTRIBUTION.
C  A L P H A  F O R  A  GAMMA O R  A  B E T A  D I S T R I B U T I O N .
C 1/(B-A) FOR A UNIFORM DISTRIBUTION.
C FIELD 3 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION.
C FIELD 4 IS THE MINIMUM VALUE OF THE DISTRIBUTION.
C FIELD 5 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.
C
C
C  D A T A  F I L E  C O N T R O L .P A T H S
C
C THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL
C PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.
C
C THERE ARE 3 FIELDS OF DATA.
C FIELD 1 IS THE NUMBER OF NODES IN THE NETWORK.
C FIELD 2 IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
C FIELD 3 IS THE DESIRED NUMBER OF PATHS IN THE SET OF K-MOST
C STOCHASTICALLY DOMINATING PATHS (MAXIMUM * 5).
C
C
C NOTE
C
C ALL UNUSED FIELDS MUST BE ZEROED OUT.
C
C
C
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C M A I N  P R O G R A M
C
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
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REAL*8 XINT(104,500,12),VALUE(104,500,10,3),A(130),
* ZVAL(130,5),DIST(20, 5),
* CRTA(100,99),CRTNA(100,99),CRTN(100),
* X,XSIZE
REAL*8 CONST,CRTNN,CUMCRT,PR1GE2,
* XD1,XD2,XD3,XD4, XD5
INTEGER 1, 11, IACT, ICOUNT, IENODE, I FLAG, I PATH , IPRE , ISNOOE,

* J,J1,J2,JJ,
* K,KK,
* L,L1,L2,L3,LASTK,
* MM,
* N,NACTS, NCL, NET, NETT,
* NPATB , NPATHS , NSIM, NSS
DIMENSION NET(100,103),IPRE(100,99,2) ,IPATH(100,99,2),NPATH(100),
* NETT(103)
COMMON/PARAl/XINT,VALUE 
COMMON / PARA2 / ZVAL 
COMMON/PARA3 /A 
COMMON/PARA4/NET,IPRE 
DATA NCL/0/
OPEN INPUT AND OUTPUT FILES
OPEN (UNIT - 11, FILE = 'datan.paths')
OPEN (UNIT = 12, FILE * •datah.paths *)
OPEN (UNIT = 13, FILE = 'control.paths')
READ CONTROL INFORMATION.
READ (13,1900) N,NACTS,NPATHS

C
DO 0910 I * 1,N
READ (11,1901) (NETT(J), J = 1,103)
Ll - NETT(l)
DO 0900 K = 1,103 
NET(L1,K) > NETT(K)

0900 CONTINUE 
0910 CONTINUE

C
C DO 1010 READS DATA FROM DATAH AND LOADS THIS DATA INTO
C THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF
C THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
C IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A
C PIECEWISE POLYGONAL FUNCTION.
C

DO 1010 I -  1 ,N A C T S
READ (12,1902) Ll,L2,XDl,XD2,XD3,XD4,XD5
VALUE(L1,L2,1,3) * XDl
VALUE(L l, L2,2 ,3 ) -  XD2
VALUE(L l, L2,3 ,3 ) « XD3
XINT(L l, L2,1) = XD4
XINT(Ll,L2,2) = XD5
IF (IDINT (VALUE (Ll ,L2,1 ,3 )) .NE. 6) THEN 
CALL LINEAR(Ll,L2,NCL)
GO TO 1010
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DO 1000 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE 
FORM FOR SUBROUTINES SERIES AND PARA.
ELSE
XINT(Ll,L2,ll) = XINT(Ll,L2,2)
X » XINT(L1,L2,1)
XSIZE - (XINT(L1,L2,2)-XINT(L1,L2,1))/10.
DO 1000 J - 1,10
VALUE(L1,L2,J,1) * VALUE(Ll,L2,2f3)
XINT(L1,L2,J) - X 
X - X+XSIZE 

1000 CONTINUE 
END IF 

1010 CONTINUE
PRINT 1910 
PRINT 1916
ANALYSIS OF THE NETWORK BEGINS.
DO 1070 DETERMINES THE SET OF PREDECESSOR ACTIVITIES, I.E. THE 
STARTING NODE NUMBER AND THE ACTIVITY NUMBER OF EACH ACTIVITY

HICH
TERMINATES AT NODE I.
DO 1070 I = 2,N 
ICOUNT = 0 
DO 1060 J = 1,1-1 
IF (NET(J,101)) 1550,1030,1030 

1030 DO 1050 J1 - 2,NET(J,103)+l
IF (NET(J,J1) - I) 1050,1040,1050 

1040 ICOUNT ■ ICOUNT+1
IPRE(I,ICOUNT,1) = J 
IPRE(I,ICOUNT,2) - Jl-1 

1050 CONTINUE 
1060 CONTINUE 
1070 CONTINUE

DO 1220 DETERMINES THE DISTRIBUTION THROUGH EACH NODE IN THE 
FORWARD DIRECTION IN THE NETWORK.
DO 1220 I = 2,N

C
C THROUGH 1220 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION
C THROUGH THE STARTING NODE OF THE ACTIVITY AND THE RESOURCE
C CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH TERMINATES
C AT NODE I AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
C
C IF THE FIRST STARTING NODE = NODE 1, THE CONVOLUTION IS EQUAL TO
C THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE I.
C

IF (IPRE(1,1,1) .EQ. 1) THEN 
IACT = IPRE(I,1,2)
DO 1175 J = 1,10
XINT(101,1,J) = XINT(1,IACT,J )
VALUE(101,1,J,1) = VALUE(1,IACT,J,1)
VALUE(101,1,J,2) = VALUE(1,IACT,J,2)
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1175 CONTINUE
XINT(101,1,11) - XINT(1,IACT,11)

C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE FIRST STARTING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
ISNODE = IPRE(1,1,1)
IACT - IPRE(1,1,2)
DO 1180 J - 1,10
XINT(101,1,J) - XINT(ISNODE,100,J)
VALUE(101,1,J,1) = VALUE(ISNODE,100, J,l)
VALUE(101,1,J,2) = VALUE (ISNODE,100,J,2)

1180 CONTINUE
XINT(101,1,11) «= XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE FIRST ACTIVITY TERMINATING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1185 J = 1,10
XINT(101,2,J) « XINT(ISNODE,IACT,J)
VALUE(101,2,J,1) - VALUE(ISNODE,IACT,J,l)
VALUE (101,2, J,2 ) ■= VALUE (ISNODE, IACT, J, 2)

1185 CONTINUE
XINT(101,2,11) = XINT(ISNODE,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
END IF 
CONTINUE

C
C IF THERE IS ONLY ONE ACTIVITY TERMINATING AT NODE I, THE
DISTRIBUTION
C THROUGH NODE I IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 100TH ACTIVITY POSITION OF NODE I.
C

IF (NET(I,102) .EQ. 1) THEN
DO 1190 J = 1,10
XINT(1,100,J) = XINT(101,1,J)
VALUE(I,100,J,1) = VALUE(101,1,J,1)
VALUE(I,100,J,2) - VALUE(101,1,J,2)

1190 CONTINUE
XINT(I,100,11) = XINT(101,1,11)

C
C IF THERE ARE TWO OR MORE ACTIVITIES TERMINATING AT NODE I, LOAD
THE
C DISTRIBUTION THROUGH THE STARTING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1205 K = 2 ,NET(I,102)
ISNODE = IPRE(I ,K ,1)
IACT = IPRE(I,K,2)
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DO 1195 J = 1,10
XINT(101,3,J) = XINT(ISNODE,100,J)
VALUE(101,3,J,1) = VALUE(ISNODE,100,J, 1)
VALUE(101,3,J,2) = VALUE(ISNODE,100,J, 2)

1195 CONTINUE
X I N T (101,3,11) = X I N T ( I S N O D E ,100,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1200 J * 1,10
XINT(101,4,J) * XINT(ISNODE,IACT,J)
VALUE(101,4,J,1) = VALUE(ISNODE,IACT,J,l)
VALUE(101,4,J,2) * VALUE(ISNODE,IACT,J,2)

1200 CONTINUE
X I N T (101,4,11) = X I N T ( I S N O D E , I A C T ,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

C A L L  P A R A (101,1,3)
1205 CONTINUE

C
C THE FORWARD DISTRIBUTION THROUGH NODE I IS THE MAXIMUM IN
TEMPORARY
C LOCATION 1. LOAD THIS INTO THE 100TH ACTIVITY POSITION OF NODE I.
C

DO 1210 J - 1,10
XINT( 1,100, J) =* XINT( 101,1, J)
VALUE(I,100,J,1) - VALUE(101,1,J,1)
VALUE(I,100,J,2) = VALUE(101,1,J,2)

1210 CONTINUE
XINT(I,100,11) = XINT(101,1,11)
END IF 

1220 CONTINUE
C
C DO 1270 DETERMINES THE DISTRIBUTION THROUGH EACH NODE IN THE
C BACKWARD DIRECTION IN THE NETWORK.
C

DO 1270 I = N-1,1,-1
C
C THROUGH 1270 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION
C THROUGH THE ENDING NODE OF THE ACTIVITY AND THE RESOURCE
C CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH STARTS
C AT NODE I AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
C
C IF THE LAST ENDING NODE = NODE N, THE CONVOLUTION IS EQUAL TO
C THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE N.
C

IACT = NET(I,103)
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IENODE = NET(I,IACT+1)
IF (IENODE .EQ. N) THEN
DO 1225 J = 1,10
XINT(101,1,J ) = XINT(I,IACT,J)
VALUE(101,1,J,1) * VALUE(I,IACT,J,1)
VALUE(101,1,J,2) - VALUE(I,IACT,J,2)

1225 CONTINUE
XINT(101,1,11) - XINT(I,IACT,11)

C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE LAST ENDING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
DO 1230 J » 1,10
XINT(101,1,J) - XINT(IENODE,101,J)
VALUE(101,1,J,1) - VALUE(IENODE,101,J,1)
VALUE(101,1,J,2) = VALUE(IENODE,101,J,2)

1230 CONTINUE
XINT(101,1,11) = XINT(IENODE,101,11)

C
C LOAD THE DISTRIBUTION OF THE LAST ACTIVITY STARTING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1235 J = 1,10 
XINT(101,2,J) = XINT(I,IACT,J)
VALUE(101,2,J,1) » VALUE(I,IACT,J,1)
VALUE(101,2,J,2) = VALUE(I,IACT,J,2)

1235 CONTINUE
XINT(101,2,11) = XINT(I,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101, 2)
END IF 
CONTINUE

C
C IF THERE IS ONLY ONE ACTIVITY STARTING AT NODE I, THE DISTRIBUTION
C THROUGH NODE I IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 101ST ACTIVITY POSITION OF NODE I.
C

IF (NET( 1,103) .EQ. 1) THEN
DO 1240 J * 1,10
XINT(I,101,J) « XINT(101,1,J)
VALUE(1,101, J, 1) = VALUE(101,1,J,1)
VALUE(I,101,J,2) = VALUE(101,1,J,2)

1240 CONTINUE
XINT(I,101,11) = XINT(101,1,11)

C
C IF THERE fiRE TWO OR MORE ACTIVITIES STARTING AT NODE I, LOAD THE
C DISTRIBUTION THROUGH THE ENDING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1255 K = NET(1,103)—1,1,-1
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IACT = K
IENODE = NET(I,IACT)+1 
DO 1245 J  = 1,10
XINT(101,3 ,J) « XINT(IENODE,101,J )
VALUE(101,3,J,1) » VALUE(IENODE,101,J , 1)
VALUE(101 ,3 ,J , 2) -  VALUE(IENODE,101,J , 2)

1245 CONTINUE
XINT(101,3,11) = XINT( IENODE,101,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1250 J  * 1,10
XINT( 101, 4 ,J) “ XINT (I ,  I  ACT, <7)
VALUE(101 ,4 ,J , l )  -  VALUE(I,IACT,J,l)
VALUE(101 ,4 ,J , 2) -  VALUE(I , IACT, J ,2)

1250 CONTINUE
XINT(101,4,11) -  XINT(I , IACT,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

CALL PARA(101,1,3)
1255 CONTINUE

C
C THE BACKWARD DISTRIBUTION THROUGH NODE I IS THE MAXIMUM IN
TEMPORARY
C LOCATION 1. LOAD THIS INTO THE 101ST ACTIVITY POSITION OF NODE I .
C

DO 1260 J  -  1,10
XINT(I,101,J) = XINT(101,1 ,J)
VALUE(I,101,J , l )  = VALUE(101,1 ,J ,1 )
VALUE (1 ,101, J ,  2) * VALUE (101,1,<J,2)

1260 CONTINUE
XINT(1,101,11) * XINT(101,1,11)
END IF 

1270 CONTINUE
C
C DO 1275 INITIALIZES THE CRITICALITY INDICES OF THE NODES (CRTN).
C

DO 1275 I = 1,N 
CRTN( I ) = 0 . 0  

1275 CONTINUE
C
C THROUGH 1415 CALCULATES THE CRITICALITY INDICES OF ALL THE
C ACTIVITIES AND NODES IN THE NETWORK.
C

DO 1415 I = N,2 ,-1  
IF (I  .NE. N) GO TO 1280 
NPATH(I) = NET(I,102)
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KX = 1
NSS = NET(I,102)
GO TO 1295

C
C AT NODE I , THE NUMBER OF PATHS TO BE CONSIDERED IS:
C (NUMBER OF PATHS CONSIDERED AT NODE (1+1))
C + (IN-DEGREE OF NODE I) -  (OUT-DEGREE OF NODE I ) .
C

1280 NPATH(I) -  NPATH(1+1)+NET(I,102)-NET(I,103)
NSS « NPATH(1+1)
K = 0

C
C DO 1290 SHIFTS TO NODE I ALL THE PATHS CONSIDERED AT NODE (1+1)
C EXCEPT THOSE PATHS WHOSE PREDECESSOR ACTIVITIES START AT NODE I .
C

DO 1290 J J  * 1,NSS 
ISNODE « IPATH(1+1,J J , 1)
IACT * IPATH(1+1,J J /2)
IF (ISNODE .EQ. I) GO TO 1290 
K -  K+l
IPATH(I ,K ,1) = ISNODE
IPATH(I,K,2) -  IACT
DO 1285 J -  1,10
XINT(102/K,J) » XINT(102,J J ,J )
VALUE(102,K ,J,1) = VALUE(102,J J ,J ,1 )
VALUE(102,K,J,2) = VALUE(102,J J ,J ,2 )

1285 CONTINUE
XINT(102,K,11) * XINT(102,J J , 11)

1290 CONTINUE 
KK -  K+l 
NSS = NPATH (I )

1295 CONTINUE
C
C DO 1320 DETERMINES THE DISTRIBUTIONS OF ALL PATHS WHICH INCLUDE
THE
C (IN-DEGREE -  OF -  NODE I) PREDECESSOR ACTIVITIES OF NODE I .
C

DO 1320 J * KK,NSS 
J J  * J-KK+1
IPATH(I , J ,1) -  IPRE(I , J J , 1)
IPATH(I,J,2) -  IPR E (I,JJ,2)

C
C LOAD THE FORWARD DISTRIBUTION THROUGH THE STARTING NODE OF THE
JJ th
C PREDECESSOR ACTIVITY OF NODE I  INTO TEMPORARY LOCATION 1.
C

ISNODE = IPATH(I , J , 1)
IACT -  IPATH(I , J , 2)
DO 1300 K = 1,10
XINT(101,1,K) = XINT(ISNODE,100,K)
VALUE(101,1,K,1) = VALUE(ISNODE,100,K ,l)
VALUE(101,1,K,2) = VALUE(ISNODE,100,K,2)

1300 CONTINUE
XINT(101,1,11) = XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE J J th  PREDECESSOR ACTIVITY OF NODE I
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C INTO TEMPORARY LOCATION 2.
C

DO 1305 K = 1,10
XINT(101,2,K) “ XINT(ISNODE,IACT,K)
V A L U E ( 101,2,K,1) “ V A L U E (ISNODE,IACT,K,l)
V A L U E (101,2 ,K,2) ■ V A L U E (ISNODE,IACT,K,2)

1305 CONTINUE
XINT(101,2,11) = XINT(ISNODE, IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
PLACE
C THE CONVOLUTION IN TEMPORARY LOCATION 1.
C
C IF THE STARTING NODE OF THE J J th  PREDECESSOR ACTIVITY OF NODE I  IS
C THE STARTING NODE OF THE NETWORK, NODE 1, THE CONVOLUTION IS THE
C DISTRIBUTION OF THE J J th  PREDECESSOR ACTIVITY.
C

IF (ISNODE .EQ.1) THEN
DO 1306 K -  1,10
XINT(101,1,K) -  XINT(101,2,K)
VALUE(101,1,K,1) * VALUE(101 ,2 ,K ,l)
VALUE(101,1,K,2) -  V A L U E (101 ,2 ,K,2)

1306 CONTINUE
XINT(101,1,11) * XINT(101,2,11)
E L S E
CALL SERIES(101,1,101,2)
END IF 
CONTINUE
IF (I  .EQ. N) GO TO 1311

C
C LOAD THE BACKWARD DISTRIBUTION THROUGH NODE I ,  THE ENDING NODE OF
C THE J J th  PREDECESSOR ACTIVITY TO NODE I ,  INTO TEMPORARY LOCATION
2 .
C

DO 1310 K * 1,10 
XINT(101,2,K) -  XINT(I,101,K)
VALUE(101,2,K ,l) « VALUE(I,101,K,1)
VALUE(101,2,K,2) * VALUE(1,101,K,2 )

1310 CONTINUE
XINT(101,2,11) = XINT(I,101,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
PLACE
C THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
C
C THE CONVOLUTION IS THE DISTRIBUTION OF ALL PATHS WHICH INCLUDE THE
C J J th  PREDECESSOR ACTIVITY OF NODE I .  LOAD THIS DISTRIBUTION INTO
THE
C J th  ACTIVITY POSITION OF NODE 102.
C

1311 DO 1315 K = 1,10
XINT(102,J,K) = XINT(101,1,K)
VALUE(102,J,K ,1) = VALUE(101,1,K,1)
V A L U E (102,J ,K ,2) = V A L U E (101,1,K, 2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

332

1315 CONTINUE
XINT(102,J , 11) = XINT(101,1,11)

1320 CONTINUE
IF (NET(I,102) .EQ. 1) GO TO 1390

C
C TO 1360 DETERMINES THE MAXIMUM OF THE DISTRIBUTIONS OF ALL THE
C PATHS CONSIDERED AT NODE (1+1) EXCEPT THOSE PATHS WHOSE
PREDECESSOR
C ACTIVITIES START AT NODE I .  DO 1290 SHIFTED THESE PATHS TO NODE
I .
C

IFLAG « 0
IF (NPATH( I )—NET(I,102)—1) 1325,1335,1345

C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C -  NUMBER OF PREDECESSOR ACTIVITIES OF NODE I ,
C THE MAXIMUM IS THE 0 DISTRIBUTION. SET A FLAG ( IFLAG “ 1 ).
C

1325 IFLAG * 1
GO TO 1360

C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C = (NUMBER OF PREDECESSOR ACTIVITIES OF NODE I)  + 1,
C THE MAXIMUM IS THE DISTRIBUTION OF THE ONE PATH WHOSE PREDECESSOR
C ACTIVITY DOES NOT START AT NODE I .  LOAD THIS DISTRIBUTION INTO
C TEMPORARY LOCATION 3.
C
1335 DO 1340 K = 1,10

XINT(101,3,K) - XINT(102,1,K)
VALUE(101,3,K,1) =* VALUE(102,1,K,1)
VALUE(101,3,K,2) = VALUE(102,1,K,2)

1340 CONTINUE
XINT(101,3,11) - XINT(102,1,11)
GO TO 1360

C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C > (NUMBER OF PREDECESSOR ACTIVITIES OF NODE I) + 1,
C THERE ARE TWO OR MORE PATHS WHOSE PREDECESSOR ACTIVITIES DO NOT
START
C AT NODE I. DO 1350 DETERMINES THE MAXIMUM OF THE DISTRIBUTIONS OF
C THESE PATHS.
C
C DO 1347 LOADS THE 1st PATH WHOSE PREDECESSOR ACTIVITIES DO NOT
START
C AT NODE I INTO TEMPORARY LOCATION 4.
C
1345 DO 1347 K = 1,10

XINT(101,4,K) = XINT(102,1,K)
VALUE(101,4,K,1) = VALUE(102,1,K,1)
VALUE(101,4 ,K,2) = VALUE(102,1,K,2)

1347 CONTINUE
XINT(101,4,11) = XINT(102,1,11)
DO 1350 K = 2,NPATH(I )-NET(I,102)
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CALL PARA(102,1,K)
1350 CONTINUE

C
C LOAD THIS MAXIHUM DISTRIBUTION INTO TEMPORARY LOCATION 3.
C

DO 1355 K * 1,10
XINT(101, 3,K) « XINT(102,1,K)
VALUE(101,3,K,1) -  VALUE(102,1,K ,1)
VALUE(101,3,K,2) -  VALUE(102,1,K,2)

1355 CONTINUE
XINT(101,3,11) -  XINT(102,1,11)

C
C RELOAD THE l a t  PATH WHOSE PREDECESSOR ACTIVITIES DO NOT START AT
C NODE I  BACK INTO THE 1 s t ACTIVITY POSITION OF NODE 102.
C

DO 1357 K - 1,10
XINT(102,1,K) « XINT(101,4,K)
VALUE(102,1,K,1) -  VALUE(101,4,K,1)
VALUE(102,1,K,2) -  VALUE(101,4 ,K,2)

1357 CONTINUE
XINT(102,1,11) * XINT(101,4,11)

C
C DO 1380 DETERMINES
C P(ALL PATHS WHICH INCLUDE THE J th  PREDECESSOR ACTIVITY >
C ALL OTHER PATHS)
C FOR EACH PREDECESSOR ACTIVITY (IACT) OF NODE I .  THIS PROBABILITY
C IS THE CRITICALITY INDEX OF THE ACTIVITY (CRTA(I,IACT)).
C

1360 DO 1380 J  = NPATH(I )-NET(I,102)+ l, NPATH(I)
C
C LOAD THE MAXIMUM DISTRIBUTION OF ALL PATHS WHOSE PREDECESSOR
C ACTIVITIES DO NOT START AT NODE I  INTO TEMPORARY LOCATION 1.
C

DO 1365 K -  1,10 
XINT(101,1,K) « XINT(101,3,K)
VALUE(101,1,K,1) « VALUE(101,3,K,1)
VALUE(101,1,K,2) -  VALUE(101,3,K,2)

1365 CONTINUE
XINT(101,1,11) -  XINT(101,3,11)
DO 1375 K - NPATH(I)-NET(I,102)+l,NPATH(I)
IF (K .EQ. J ) GO TO 1375

C
C LOAD THE DISTRIBUTIONS OF ALL PATHS WHICH INCLUDE THE Kth
PREDECES-
C SOR ACTIVITY OF NODE I  INTO TEMPORARY LOCATION 2, WHERE K IS DIF-
C FERENT FROM J .
C

DO 1370 KK -  1,10 
XINT(101,2,KK) <* XINT( 102,K,KK)
VALUE(101,2,KK,1) = VALUE(102,K,KK,1)
VALUE(101 ,2 ,KK,2) «= VALUE(102,K,KK,2)

1370 CONTINUE
XINT(101,2,11) = XINT(102,K ,11)

C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2
AND
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LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
IF THE MAXIMUM DISTRIBUTION OF ALL PATHS WHOSE PREDECESSOR ACTIVI
TIES DO NOT START AT NODE I  IS THE 0 DISTRIBUTION, THE PARALLEL- 
REDUCTION WITH THE DISTRIBUTION OF ALL PATHS WHICH INCLUDE THE 1st 
PREDECESSOR ACTIVITY OF NODE I  IS THE DISTRIBUTION OF THE LATTER.

IF ((K .EQ. NPATH( I ) —NET(I, 102)+ l) .AND. (IFLAG .EQ. 1)) THEN
DO 1372 KK -  1,10
XINT(101 ,1 ,KK) -  XINT(101,2,KK)
VALUE(10 1 ,1 ,KK,1) -  VALUE(101,2 ,KK,1)
VALUE(1 0 1 ,1,KK,2) -  VALUE(101 ,2 ,KK,2)

1372 CONTINUE
XINT(101,1,11) -  XINT(101,2,11)
ELSE
CALL PARA(101,1,2)
END IF 

1375 CONTINUE
CALL COMPAR( 102,J ,  101,1,PR1GE2)
IACT = J-(NPATH(I)-NET(I,102))
CRTA(I, IACT) -  PR1GE2 

1380 CONTINUE

THROUGH 1410 COMPUTES NORMALIZED CRITICALITY INDICES OF THE J th  
PREDECESSOR ACTIVITIES OF NODE I (CRTNA(I,J)) AND THE CRITICALITY 
INDEX OF NODE I  (CRTN(I)).

IF (I  .NE. N) GO TO 1400
CUMCRT = 0 .0
DO 1385 J = 1 ,NET(N,102)
CUMCRT = CUMCRT + CRTA(I,J)

1385 CONTINUE
CRTN(N) « CUMCRT 
CONST = CUMCRT
IF (CONST .EQ. 0.0) CONST = 1 .0  
GO TO 1400 

1390 IF (I  .EQ. N) GO TO 1395 
CRTA(1 ,1 ) -  CRTN(I)
CRTNA(1 ,1) = CRTA(1 ,1 )/CONST 
GO TO 1400 

1395 CRTN(I) » 1.0
CRTA(1 ,1 ) -  CRTN(I)
CRTNA(1 ,1) ” CRTA(I,1)
CONST = 1.0 

1400 PRINT 1920,1 
PRINT 1925
DO 1405 J = 1,NET(I,102)
CRTNA( I , J) * CRTA(I, J)/CONST
PRINT 1930,IPRE(I, J , 1 ) ,CRTA(I,J), CRTNA(I,J)

1405 CONTINUE
DO 1410 J = 1,NET(I,102)
ISN ODE =  I P R E ( I , J , 1 )
CRTN(ISNODE) = CRTN(ISNODE)+CRTA(I, J)

1410 CONTINUE 
1415 CONTINUE

C
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C DO 1420 CONFUTES NORMALIZED CRITICALITY INDICES OF THE NODES
C (CRTNN).
C

PRINT 1935 
DO 1420 I -  1,N 
CRTNN * CRTN( I ) / CONST 
PRINT 1930,I,CRTN(I ) , CRTNN 

1420 CONTINUE
C
C DETERMINE THE NPATHS MOST STOCHASTICALLY DOMINATING PATHS THROUGH
THE
C NETWORK.
C

CALL DOMPTH(N,NPATHS)
STOP 

1550 PRINT 1995 
STOP

C
C FORMAT STATEMENTS
C

1900 FORMAT (1 3 ,IX ,14 ,IX ,I I )
1901 FORMAT ( 3(12 ,25(IX, 1 2 )/) ,1 2 ,2 1 (IX ,1 2 ) ,IX ,II ,2 ( IX ,12))
1902 FORMAT ( 2 (1 2 ,IX ),F1.0 ,4(IX,F8.2))
1910 FORMAT (1H1)
1916 FORMAT (IX, 'FROM THE POLYGONAL APPROXIMATION AND REDUCTION ’, 

fi'TECHNIQUE: 1)
1920 FORMAT ( /  IX,'THE ACTIVITIES ENDING AT NODE ' , 1 3 , '  AND THEIR ' ,

6 'CRITICALITY INDICES ARE:')
1925 FORMAT ( IX,24X,'NORMALIZED'/

& IX, ' STARTING',2X, ' CRITICALITY' ,  2X, 'CRITICALITY' /
6 IX,2X,'NODE' , 7X,'INDEX',8X,'INDEX')

1930 FORMAT ( IX,2X,13,7X,F7.5 ,6X,F7.5)
1935 FORMAT ( /  IX, 'THE CRITICALITY INDICES OF THE NODES ARE:'/

& IX,23X,' NORMALIZED' /
& 1X,10X,' CRITICALITY',2X,'CRITICALITY'/
& IX,2X,' NODE' , 7X,' INDEX' , 8X,' INDEX')

1995 FORMAT (IX,'PROGRAM STOPPED' /  IX,'IMPROPER NODE NUMBER(S) '
6 , 'E N C O U N T E R E D ')

1996 FORMAT ( / /  IX,'CPU TIME FOR PART PROCESSING IS ' ,F 7 .2 , '  SECONDS' 
&// )
END

C END MAIN PROGRAM
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C S U B R O U T I N E  P A R A
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
SUBROUTINE PARA (Ll,L2,L3)
REAL*8 VALUE(104 ,500 ,10 ,3),XINT(104,500, 12)
REAL*8 XVAL,ZVAL(130,5),PAR(2,1 5 ,6 ) ,FACT,B(130)
REAL*4 Z
INTEGER L l, L2, L3,NVl, NV2 
INTEGER K4(2,30)
INTEGER I,IINT,N,NCL,J,K,K3,L6,LASTJ,LASTK
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COMMON/PARAl /XINT, VALUE 
COMMON/ PARA2/ZVAL 
COMMON/PARA3/B

C
C SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE
C EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP
C F(X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.
C

NV1 “ 10 
NV2 -  10 
DO 2020 N = 1,2 
L6 -  L2
IF (N .EQ. 2) L6 = L3 
FACT = 0
DO 2010 J  = 1,10 
B (l) -  XINT(L1,L6,J)

C
C DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X)
C INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS
C CUMULATIVE DISTRIBUTION CAP F(X).
C

DO 2000 I  -  1,2
XV AL = VALUE(Ll,L6,J,I)
Z = FLOAT(I )
PAR(N,J,1+1) = XVAL/Z
PAR(N,J,1) = PAR(N,J,l)+((-1.0)*(XVAL/Z)*(B(1)**I))
K4(N,J) = 1+1 

2000 CONTINUE
IF (J  .GT. 1) PAR(N,J,1) = PAR(N,J,1)+FACT
FACT -  PAR(N,J,1)+(PAR(N,J,2 )*XINT(L1,L6, J + l ) )+(PAR(N,J,3)

&*(XINT(L1,L6,J+l)**2))
2010 CONTINUE 
2020 CONTINUE

C
C DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.
C

DO 2040 I  = 1,22
IF ( I  .GT. 11) GO TO 2030
B(I ) = XINT(L1,L2,I)
GO TO 2040 

2030 B(I) = XINT(L1,L3,1-11)
2040 CONTINUE 

NCL “ 21 
CALL SORT (NCL )

C
C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER-
C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
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c
IINT = 0
LASTJ = NCL+1
DO 2080 J  -  1 ,LASTJ
IF ( (XINT(L1,L2,1) .GE. XINT(L1,L3,1)-0.001) .AND.

&(XINT(L l,L2,1) .LE. XINT(Ll,L3,1 )+0.001)) GO TO 2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(H,L2,1) .LE. XINT(L1,L3,1)+0.001) GO TO 2050 
IF (XINT(L1,L3, J+ l) .GE. XINT(Ll,L2,1 )-0 .001) IINT = J  
IF ( (XINT(L1,L3,J+l) .LE. 0.001)

&.OR. ( (XINT(Ll,L2,l) .GE. XINT(Ll,L3,J+l)-0.001)
&.AND. (XINT(L l, L2,1) .LE. XINT(Ll,L3,J+l)+0.001)
&.AND. (XINT(L lfL3, J+2) .LE. 0.001))) GO TO 2180 
GO TO 2080

2050 IF (XINT(L1,L2,J+l) .GE. XINT(L1,L3,1)-0.001) IINT = J  
IF ( (XINT(L1,L2,J+l) .LE. 0.001)

&.OR. ( (XINT(L1,L3,1) .GE. XINT(Ll,L2, J + l)-0.001)
&.AND. (XINT(L l , L3,1) .LE. XINT(Ll,L2,J+l)+0.001)
&.AND. (XINT(L1,L2,J+2) .LE. 0.001))) GO TO 2160 
GO TO 2080 

2060 LASTK = NCL-( IINT-1)
DO 2070 K = 1 ,LASTK 
B(K) = B(K+IINT)
B(K+IINT) = 0 

2070 CONTINUE
GO TO 2090 

2080 CONTINUE 
2090 NCL = NCL-IINT

C
C DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE
C EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED
C BETWEEN THE TWO ARCS.
C

N1 = 0 
N2 = 0
DO 2150 I = 1,NCL 
DO 2110 J  = 1,11

C
C DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION
C THAT ARE VALID FOR THE B(I) VALUE BEING CONSIDERED. N1 AND
C N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.
C

IF (N1 .GE. 1) GO TO 2100
IF ( ( (B(I) .GE. XINT(L1,L2, J ) -0.001) .AND. (B(I+1)

&.LE. XINT(Ll,L2, J+ l)+ 0 .001)) .OR. (XINT(Ll,L2,J+l) .LE. 0.001)) 
&N1 = J  

2100 CONTINUE
IF (N2 .GE. 1) GO TO 2110
IF ( ( (B(I) .GE. XINT(L1,L3,J)-0.001) .AND. (B(I+1)

&.LE. XINT(L l , L3, J+ l)+ 0 .001)) .OR. (XINT(L1,L3,J+l) .LE. 0.001)) 
&N2 = J  

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) = 1 
IF (Nl .GT. NV1) K4(1 ,N l) = 1

C
C DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR
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C C A P  F ( X )  A N D  C A P  G ( X ) •
C

LASTJ = K4(2,N2)
LASTK = K4(1,N1)
DO 2130 J  = 1 ,LASTJ 
DO 2120 K = 1 ,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) = 1
IF (N1 .GT. NVl) PAR(1,N1,K) * 1
K3 = J+K-l
ZVAL(I,K3) = ZVAL(I,K3)+(PAR(1,N1,K)*PAR(2,N2,J))

2120 CONTINUE 
2130 CONTINUE

C
C DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE
C MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A
C LITTLE H(X) FOR THAT PRODUCT.
C

DO 2140 J  = 1,4
Z V A L ( I , J ) =  Z V A L ( I , J + l ) * F L O A T ( J )
ZVAL(I , J + l ) = 0 

2140 CONTINUE 
N1 = 0 
N2 = 0 

2150 CONTINUE
C
C LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE RESULTS OF THE
C PARALLEL REDUCTION WITH THE B(O) AND B (l) FORM IN EACH OF 10
C CLASSES.
C

VALUE(L1,L2,1,3) = 99.
CALL LINEAR(L1,L2,NCL)
GO TO 2180 

2160 DO 2170 I  = 1,10
VALUE(L1,L2,I,1) = VALUE(L l,L3, 1,1)
VALUE(L l, L2, I ,2) = VALUE(L1,L3,I,2)
XINT(L l, L2, I ) = XINT(L1,L3,I)

2170 CONTINUE
XINT(L l,L2,11) = XINT{L l,L3,11)

2180 VALUE(L1,L2,1,3) = 0 
DO 2210 I  = 1,2 
DO 2200 J  = 1,10 
DO 2190 K = 1,3 
PAR(I,J,K) = 0 

2190 CONTINUE 
2200 CONTINUE 
2210 CONTINUE 

RETURN 
END

C END SUBROUTINE PARA
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C

C S U B R O U T I N E  S E R I E S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
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c
c
c
c
c
c
c
c
c
c

c
c
c
c

SUBROUTINE SERIES (Ll,L2,L3,L4)
REAL*8 VALUE(104 ,500 ,10 ,3),XINT(104,500,12)
REAL*8 ZVAL(130,5),XLIM(2),A(130)
REAL*8 F0, F l , GO, G1, XL 
INTEGER Ll,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCL1,NE 
COMMON/ PARAl/XINT, VALUE 
COMMON/ PARA2/ ZVAL 
COMMON/PARA3/A

SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY 
DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE 
POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X) .

THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE 
CONVOLUTION.

THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA. 

K = 0

DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION 
BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.

.LE.

.LE.
0 ) .AND.(J  .GT. 1)) 
0 ) .AND.(J  .GT. 1))

DO 3 0 1 0  I  =  1 , 1 2  
I F  ( ( X I N T ( L 3 , L 4 , I )
DO 3 0 0 0  J  =  1 , 1 2  
I F  ( ( X I N T ( L 1 , L 2 , J )
IF ( ( XINT(L l, L2, J)
K = K + l
A ( K )  = X I N T ( L l , L 2 , J ) + X I N T ( L 3 , L 4 , I ) 

3 0 0 0  CONTINUE 
3 0 1 0  CONTINUE 
3 0 2 0  N I N T  = 1 - 2  

NCL =  K - l

.LE. 0 ) .AND.(I  .GT. 1)) GO TO 3020

NCLl = J-2  
GO TO 3010

C
C
C
C
C
C
C
C

C
C
C
C
C

DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X) 
DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES 
CREATED BY COMBINING F(X) AND G(T-X). DO 3100 IS CONTROLLED 
BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS 
ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY 
CLASS IN BOTH DISTRIBUTIONS.
CALL SORT(NCL)
DO 3120 K = l,NCLl 
DO 3110 I = 1,NCL 
DO 3100 J  = 1,NINT 
IK = 0
THIS IF STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE 
INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K 
BEING CONTROLLED BY DO 3120.
IF ( (A (I) .GE. XINT(Ll, L2, K)+XINT(L3, L4, J ) -0.001) .AND. (A(I+1) 

&.LE. XINT(L l, L2,K+l)+XINT(L3,L4, J + l)+0.001)) IK = J
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IF (IK .GE. 1) GO TO 3030 
GO TO 3100 

3030 ISEL(l) * 0 
ISEL(2) = 0

C
C THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE
C UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER
C THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL
C IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.
C

IF (XINT(L l, L2, K) .GE. (A(1+1)-XINT(L3,L4,J+l)-0 .001)) GO TO 3040 
XLIM(l) = XINT(L3,L4,J+l)
ISEL(l) = 999 
GO TO 3050 

3040 XLIM(l) = XINT(Ll,L2,K)
3050 IF (XINT(L1,L2, K+l) .LE. (A( I ) -XINT(L3,L4, J ) +0 . 001)) GO TO 3060 

XLIM(2) = XINT(L3,L4,J)
ISEL(2) = 999 
GO TO 3070 

3060 XLIM(2) = XINT(Ll,L2,K+l)
3070 CONTINUE

DO 3090 NE = 1,2 
F0 = VALUE(L l,L2,K,1)
Fl = VALUE(Ll,L2,K ,2)
GO = VALUE(L3,L4,IK,1)
G1 = VALUE(L3,L4, IK,2)
XL = XLIM(NE)
Z = 1.0
IF (NE .EQ. 1) Z = -1 .0  
IF (ISEL(NE) .EQ. 999) GO TO 3080

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE
C LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS
C BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE
C SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT
C IS BEING EVALUATED.
C

ZVAL(1,1) = ZVAL(I,l) + ( (F0*G0*XL) + ( (Fl*G0*XL**2)/2.)
& +((-1.0*F1*G1*XL**3) /3 .) + ( (-l.O*F0*Gl*XL**2)/2.))*Z 

ZVAL( 1 ,2 ) = ZVAL(I,2)+(((Fl*Gl*XL**2)/2.)+(F0*Gl*XL))*Z 
ZVAL(1,3) = ZVAL(I,3)+((-1.0*FO*Gl)/2.)*Z 
GO TO 3090

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL FOR LIMITS.
C IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE
C OF THE DIFFERENT POLYNOMIAL CREATED WHEN THE INTEGRATION
C INVOLVES LIMITS IN THE FORM OF (T-X).
C

3080 ZVAL(1,1) = ZVAL(1 ,1) + ((-1 . 0*F0*G0*XL) + ( ( F1*G0*XL**2) /2  .)
&+((Fl*Gl*XL**3)/3.)+ ((-1 .0*F0*G1*XL**2)/2.))*Z 

ZVAL(1,2) = ZVAL(I,2)+((-1.0*Fl*G0*XL)+(F0*GO)- 
&( (Fl*Gl*XL**2)/2. ) )*Z 

ZVAL (1 ,3) = ZVAL(I,3) + ( (Fl*G0)/2. ) *Z 
ZVAL(1,4) = ZVAL(I,4)+((Fl*Gl) / 6 . ) *Z 

3090 CONTINUE 
3100 CONTINUE
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3110 CONTINUE 
3120 CONTINUE

LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE CONVOLUTION 
RESULTS WITH THE B(0) AND B (l) FORM IN EACH OF 10 CLASSES.

VALUE(L l, L2,1 , 3) = 99.
CALL LINEAR(Ll,L2,NCL)
RETURN 
END
END SUBROUTINE S E R I E S

S U B R O U T I N E  L I N E A R

SUBROUTINE LINEAR (Ll,L2,NCL)
REAL*8 VALUE(104,500,10, 3) ,XINT(104 ,500 ,12),ZVAL(130 ,5),A(130)
REAL* 8 Q, Q1, Q2 , STD , SUMX, SUMY, SUMXY, SUMSQ
REAL*8 ALPHA,AREA,BETA,FACT,SIZE,W,X,XLMBDA,XMEAN
REAL*8 XMODE,XSIZE,Y
INTEGER Ll,L2
COMMON/ PARAl/XINT,VALUE
COMMON/ PARA2 /ZVAL
COMMON/PARA3/A
EXTERNAL DGAMMA

SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA 
FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH 
THE B(O) AND B(l) FORM IN EACH OF 10 CLASSES THROUGH THE USE 
OF SIMPLE LINEAR REGRESSION.

XMODE = VALUE(L l,L2,2,3)
XMEAN = VALUE(L1,L2,2,3)
STD = ( (VALUE(L l,L2,2,3) -X IN T (L l,L 2 ,l))/3 .)
XLMBDA = VALUE (L l, L2,2,3) -XINT (L l,L 2 ,l)
ALPHA = VALUE(L l,L2,2, 3)
BETA = VALUE(Ll,L2,3,3)
SIZE * (XINT(L l, L2,2 )-X IN T(Ll,L2,l))/1 0 .
IF ( IDINT(VALUE(L1,L2,1 ,3 )) .EQ. 99) SIZE * (A(NCL+1)-A(1))/10. 
XINT(L l, L2,11) = XINT(L1,L2,2)
IF (IDINT(VALUE(Ll,L2,1 ,3)) .EQ. 99) XINT(Ll,L2,11) = A(NCL+1)
X -  XINT(L1,L2,1)
IF ( IDINT(VALUE(Ll,L2,1,3)) .EQ. 99) X = A(l)
DO 5000 I  = 1,10 
XINT(L l, L2, I ) = X 
X = X+SIZE 

5000 CONTINUE
DO 5050 I = 1,10 
X = XINT(L1,L2,I)
SUMY = 0.
SUMX = 0.
SUMXY = 0.
SUMSQ = 0.
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c
C W CONTROLS THE NUMBER OF DATA POINTS USED IN THE REGRESSION
C COMPUTATIONS.
C

W = 10.+IDINT(SIZE*3.)
XSIZE = SIZE/W 
LASTJ = IDINT(W)
DO 5040 J  = 1 ,LASTJ
IF ( IDINT(VALUE(L l, L2,1 ,3 ))  .NE. 99) GOTO 5030 
DO 5010 K3 = 1,NCL 
K = 0
IF ((X .GE. A(K3)) .AND.(X .LE. A(K3+1))) K = K3 
IF (K .GE. 1) GO TO 5020 

5010 CONTINUE
C
C S E R I E S  OR PARA GENERATED D I S T R I B U T I O N S .
C

5020 Y = ZVAL(K,1)+(ZVAL(K,2 )*X)+(ZVAL(K,3)*(X* *2))
S+(ZVAL(K,4)*(X**3))

5030 CONTINUE
C
C TRIANGULAR DISTRIBUTION.
C

IF (IDINT(VALUE (Ll ,L2,1 ,3 ))  .EQ. 1) THEN
IF (XINT(L1,L2,1) .LE. X .AND. X .LE. XMODE) THEN
Y = (2 .* (X—XINT(L1,L2,l)))/((XMODE-XINT(Ll,L2 ,1 ) )* 1 0 .*SIZE)
ELSE
Y = (2 .* (XINT(L1,L2,1 1 )-X )) / ( (XINT(L1,L2,11)-XMODE)*10.*SIZE) 
END IF

C
C NORMAL DISTRIBUTION.
C

ELSE IF ( IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 2) THEN
Y = ( 1 . / (STD*2.506628275))*(DEXP((-1 .0 )* ( ( (X-XMEAN)/STD)**2)/2 .) )

C
C EXPONENTIAL DISTRIBUTION (SHIFTED).
C

ELSE IF (IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 3) THEN
Y = (1. /XLMBDA) * (DEXP( (-1 .0 ) * ( (X-XINT(L1,L2,1) ) /XLMBDA) ) )

C
C GAMMA DISTRIBUTION.
C

ELSE IF ( IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 4) THEN
Y = (1. /  (DGAMMA( ALPHA) * (BETA**ALPHA)) ) *DEXP(-X/BETA) * (X** (ALPHA—1. 

*)>
C
C BETA DISTRIBUTION.
C

ELSE IF ( IDINT(VALUE(L l, L2,1 ,3 ))  .EQ. 5) THEN
Y = (DGAMMA(ALPHA+BETA)/(DGAMMA(ALPHA)*DGAMMA(BETA) ) )*

& (1 ./(10.*SIZE)**(ALPHA+BETA-2.))*
&( (X-XINT(L1,L2,1))**(ALPHA-1.))*
&((XINT(L1,L2,11)-X)**(BETA-1.))
END IF
IF (Y .LT. 0) Y = 0 
SUMX =  SUMX+X
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SUMY = SUMY+Y 
SUMXY = SUMXY+(X*Y)
SUMSQ = SUMSQ+(X* *2)
X = X+XSIZE 

5040 CONTINUE
VALUE(L l , L2, 1,2) = (SUMXY-((SUMX*SUMY)/W)) /(SUMSQ-((SUMX**2) /W)) 
VALUE(L l , L2,1 ,1 ) = (SUMY/W)- ( VALUE(Ll,L2, I , 2 ) * (SUMX/W) )

5050 CONTINUE

DO 5060 CALCULATES THE AREA UNDER THE APPROXIMATED DISTRIBUTION. 
AN ADJUSTMENT FACTOR FOR THE AMOUNT THAT THIS AREA HAS BEEN 
UNDERESTIMATED OR OVERESTIMATED IS THEREBY DETERMINED.

DO 5060 I = 1,10
Q =■ XINT (L l, L2,1+1) -XINT (L l, L2 , 1 )
Q1 = (XINT(L1,L2,1) *VALUE(Ll,L2,1 ,2 ) )+VALUE(Ll,L2,1 ,1 )
Q2 = (XINT(L1 ,L 2,1+1) *VALUE(Ll,L2,1 ,2 ) ) +VALUE (L l,L2,1 ,1 )
IF (Ql .LT. 0 .) VALUE(L l, L2,1 ,1 ) = VALUE(Ll,L2, I , 1)+(Q1*(-1 .0 ))
IF (Q2 .LT. 0 .) VALUE(L l, L2,1 ,1 ) = VALUE(L l,L 2, I ,1 )+ (Q2*(-1 .0 ))
IF (Ql .LT. 0 .) Ql = 0.
IF (Q2 .LT. 0 .) Q2 = 0.
AREA = AREA+((Q1+Q2)*Q*0.5)

5060 CONTINUE
FACT = 1 .0 /AREA

DO 5070 ADJUSTS THE COEFFICIENTS OF ALL THE LINEAR POLYNOMIAL 
PIECES BY THE FACTOR COMPUTED IN DO 5060 IN ORDER TO NORMALIZE 
THE AREA BACK TO ONE. THIS ACTS TO REDUCE ACCUMULATING ERRORS 
DURING PROGRAM COMPUTATIONS.

DO 5070 I = 1,10
VALUE(L l , L2,1 ,1 ) -  VALUE(Ll,L2,I,l)*FACT 
VALUE(L1,L2,1,2) = VALUE(Ll,L2, I ,2 ) *FACT 

5070 CONTINUE 
AREA = 0
DO 5080 I  = 1,130 
A (I) = 0
ZVAL(1 ,1 ) = 0 
ZVAL(1 ,2 ) = 0 
ZVAL(1 ,3 ) = 0 
ZVAL(1 ,4 ) = 0 

5080 CONTINUE 
RETURN 
END
END SUBROUTINE LINEAR

S U B R O U T I N E  S O R T

SUBROUTINE SORT (NCL) 
REAL*8 A( 130),B 
INTEGER NCL 
INTEGER I,K1
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COMMON /  PARA3 /A

SUBROUTINE SORT IS USED TO CONDUCT AN ALGEBRAIC SORT OF DATA 
CREATED IN THE SERIES AND PARA SUBROUTINES.

6000 K1 = 0
DO 6010 I  = 1,NCL
I F  ( ( A ( I ) . L T .  ( A ( I + 1 ) + . 0 1 ) ) . A N D . ( A ( I ) .GT. (A ( 1 + 1 ) - . 0 1 ))) 

SGO TO 6 0 2 0  
I F  ( A ( I ) . L T .  A ( 1 + 1 ) )  GO T O  6 0 1 0  
I F  ( A ( I ) . G T .  A ( 1 + 1 ) )  B =  A ( I )
A(I) * A(1+1)
A( 1+1) = B 
Kl-Kl+1 

6010 CONTINUE
IF (Kl .GE. 1) GO TO 6000 
GO TO 6040 

6020 NCL = NCL-1
LASTJ = NCL+1 
DO 6030 J  = I,LASTJ 
A( J) * A( J + l)
A(J+l) = 0 

6030 CONTINUE
GO TO 6000 

6040 RETURN 
END
END SUBROUTINE SORT

S U B R O U T I N E  C O M P A R

SUBROUTINE COMPAR(Ll,L2,L3,L4, PR1GE2)
REAL*8 XINT(104,500,12),VALUE(104,500,10,3),

BOX,BIX,B0y,BlY,Cl,C2,C3,C4,CELL,PR1GE2,VOLUME 
XLOWER, XUPPER, YLOWER, YUPPER 

INTEGER I,J,L1,L2,L3,L4 
COMMON /  PARAl /XINT , VALUE

SUBROUTINE COMPAR COMPUTES P(X > OR = Y), WHERE X IS THE DISTRIBU
TION OF NODE Ll, ACTIVITY L2, AND Y IS THE DISTRIBUTION OF NODE

ACTIVITY L4.

IF Y(11) < OR = X (l) , THEN P(X > OR = Y) = 1 .  RETURN PR1GE2 =

IF (XINT(L3,L4,11) .LE. XINT(L1,L2,1 ))  THEN
PR1GE2 = 1 .0
RETURN

IF X (ll) < OR = Y(1), THEN P(X > OR = Y) = 0 .  RETURN PRIGE2 =
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ELSE IF (XINT(L1,L2,11) .LE. XINT(L3,L4,1)) THEN 
PR1GE2 = 0.0 
RETURN 
END IF

INITIALIZE P(X > OR = Y) [PR1GE2] .

PR1GE2 = 0.0

DO 9010 COMPUTES THE CONTRIBUTION TO P(X > OR = Y) IN EACH CELL 
[X (I),X (I+ 1)] X  [Y( J) ,Y(J+1) ] OF THE JOINT DISTRIBUTION OF X AND Y 
AND SUMS THESE CONTRIBUTIONS IN PR1GE2.

DO 9010 I  = 1,10 
DO 9000 J  * 1,10

IF X(I+1) < OR = Y( J ) , THE CELL LIES COMPLETELY ABOVE THE LINE X =

SO THE CELL'S CONTRIBUTION TO P(X > OR = Y) IS 0.

IF (XINT(L l, L2,1+1) .LE. XINT(L3,L4, J ) ) GO TO 9000 
BOX = VALUE(L l, L2 , 1 ,1)
BIX = VALUE(L l, L2, I ,2)
BOY = VALUE(L3,L4,J,1)
B1Y = VALUE(L3,L4,J,2)
XLOWER = XINT(Ll,L2, I )
XUPPER = XINT(L1,L2,I+1)
YLOWER = XINT(L3,L4,J)
YUPPER = XINT(L3,L4,J+l)

IF Y( J + l ) < OR = X (I), THE CELL LIES COMPLETELY BELOW THE LINE X =

IF (YUPPER .LE. XLOWER) THEN
CELL = (BOX* (XUPPER-XLOWER) + (BlX/2 .0) * (XUPPER* *2-XL0WER* *2))

* (BOY* (YUPPER-YLOWER) + (B1Y/2 .0) * (YUPPER* *2-YL0WER**2)) 
PR1GE2 = PR1GE2+CELL 
GO TO 9000 
ELSE
Cl = —(BOX* (BOY*YLOWER+(BlY/2.0 ) *YL0WER**2))
C2 = (B0X*B0Y/2.0 )-(BlX/2.0 )* (BOY*YLOWER+(BlY/2.0)*YLOWER**2)
C3 » (BlX*B0Y/3.0)+(B0X*BlY/6.0)
C4 * BlX*BlY/8.0 
END IF

IF Y( J ) < X(I) < Y(J + l) < X(I+1), THE LINE X = Y PASSES THROUGH 

LEFT SIDE AND THE TOP OF THE CELL.

IF ((YLOWER .LT. XLOWER) .AND. (XLOWER. LT. YUPPER) .AND.
(YUPPER .LT. XUPPER)) THEN 

CELL = Cl *(YUPPER-XLOWER)
+C2*(YUPPER**2-XLOWER**2)
+C3*(YUPPER**3-XLOWER**3)
+C4*(YUPPER**4-XLOWER**4)
+ (B 0 X* (XUPPER-YUPPER ) + (BlX/2.0)*( XUPPER * * 2 -  YUPPER * * 2))
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* * (BOY * (YUPPER-YLOWER )+(BlY/2.0 )* ( YUPPER* *2-YLOWER* *2)) 
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF X(I) < OR = Y(J) AND Y(J+1) < X(I+1),THE LINE X -  Y PASSES
THROUGH THE BOTTOM AND THE TOP OF THE CELL.

ELSE IF ((XLOWER .LE. YLOWER) .AND. (YUPPER .LT. XUPPER)) THEN 
CELL -  C1*(YUPPER-YLOWER)

* +C2*(YUPPER**2-YLOWER**2)
* +C3*(YUPPER**3-YLOWER**3)
* +C4*(YUPPER*‘4-YLOWER**4)
* +(BOX*(XUPPER-YUPPER) + (BlX/2.0 )* (XUPPER* *2-YUPPER* *2))
* * (BOY* (YUPPER-YLOWER ) + (BlY/2.0)*( YUPPER* *2-YLOWER* *2 ) ) 
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF X(I) < OR = Y(J) < X(I+1) < OR = Y (J+ l), THE LINE X = Y PASSES
THROUGH THE BOTTOM AND THE RIGHT SIDE OF THE CELL OR THROUGH THE
LOWER-LEFT AND UPPER-RIGHT CORNERS OF THE CELL.

ELSE IF ((XLOWER .LE. YLOWER) .AND. (YLOWER .LT. XUPPER) .AND.
* (XUPPER .LE. YUPPER)) THEN
CELL = Cl*(XUPPER-YLOWER)

* +C2*(XUPPER**2-YLOWER**2)
* +C3*(XUPPER* *3-YLOWER* *3)
* +C4*(XUPPER**4-YLOWER**4)
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF Y(J) < X(I) AND X(I+1) < Y (J+l), THE LINE X = Y PASSES THROUGH 
BOTH SIDES OF THE CELL.

ELSE IF ((YLOWER .LT. XLOWER) .AND. (XUPPER .LT. YUPPER)) THEN 
CELL = C1*(XUPPER-XLOWER)

* +C2*(XUPPER**2-XLOWER**2)
* +C3 *(XUPPER* * 3-XLOWER* * 3)
* +C4*(XUPPER**4-XLOWER**4)
PR1GE2 = PR1GE2+CELL
GO TO 9000 
END IF 

9000 CONTINUE 
9010 CONTINUE

DO 9030 COMPUTES THE VOLUME UNDER THE APPROXIMATED JOINT DISTRIBU
TION OF X AND Y. AN ADJUSTMENT FOR THE AMOUNT THAT THIS VOLUME
BAS BEEN UNDERESTIMATED OR OVERESTIMATED IS THEN MADE TO PR1GE2.

VOLUME = 0 . 0  
DO 9030 I = 1,10
DO 9020 J  = 1,10
BOX = VALUE(Ll,L2,1,1)
BIX = VALUE(L l,L2, I ,2)
BOY = VALUE(L3,L4,J,1)
B1Y = VALUE(L3,L4,J,2)
XLOWER = XINT(L1,L2,I)
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XUPPER = XINT(L1,L2,I+1)
YLOWER = XINT(L3,L4,J)
YUPPER = XINT(L3,L4,J+l)
CELL -  (BOX*(XUPPER-XLOWER)+(BlX/2.0 )* (XUPPER**2-XLOWER**2))

* *(BOY*(YUPPER-YLOWER)+(BlY/2.0)*(YUPPER**2-YLOWER**2)) 
VOLUME = VOLUME+CELL

9020 CONTINUE 
9030 CONTINUE

PR1GE2 = PR1GE2/VOLUME
RETURN
END

C END SUBROUTINE COMPAR
C
C ************************************************************
c
c S U B R O U T I N E  D O M P T H
C
C ************************************************************
c

SUBROUTINE DOMPTH(N,NPATHS)
REAL*8 XINT(104,500,12),VALUE(104,500,10 ,3),

* PR1GE2
DIMENSION NET(100,103),IPRE(100 ,99 ,2),NPA(500,101),

* NPPA(100,5), INP(500),NP(5),NPP(100),NPK1(500),
* NPK2(500),NPR1(5)

INTEGER I , IACT,INP,ISLAST,ISNODE, ISNODl, ISNOD2,
* J ,J J ,J 1 ,J 2 ,J 3 ,
* K,KK,
* N, NET, NNN, NOPAT, NP, NPA,NPATHS,NPK, NPK1, NPK2, NPP, NPPA,
* NPRl, NSS 

COMMON/ PARA1/XINT, VALUE 
COMMON/ PARA4/NET, IPRE

c
c SUBROUTINE DOMPTH DETERMINES THE K MOST STOCHASTICALLY DOMINATING
c PATHS IN THE NETWORK. THE FOLLOWING ARRAYS AND VARIABLES ARE USED
c IN THIS SUBROUTINE:
c NOPAT : NUMBER OF PATHS IN THE MAIN PATH LIST
c NPATHS : DESIRED NUMBER OF PATHS IN THE SET OF K MOST
c STOCHASTICALLY DOMINATING PATHS (MAXIMUM 5)
c NPK : NUMBER OF CANDIDATE PATHS THROUGH NODE I
c NP(K) : RANK IN THE MAIN PATH LIST OF THE Kth MOST
c STOCHASTICALLY DOMINATING PATH ENDING AT NODE I
c NPA(I,J) : NODES FORMING THE I th  RANK PATH IN THE MAIN PATH LIST
c NPP(I ) : NUMBER OF DOMINATING PATHS ENDING AT NODE I
c NPPA(I,J) : RANK IN THE MAIN PATH LIST OF THE J th  MOST DOMINATING
c PATH ENDING AT NODE I
c NPK1(K) : RANK IN THE MAIN PATH LIST OF THE Kth CANDIDATE PATH
c ENDING AT NODE I
c NPK2(K) : NUMBER OF THE PREDECESSOR NODE TO NODE I OF THE Kth
c CANDIDATE PATH ENDING AT NODE I
c NPRl(K) : RANK OF THE Kth MOST DOMINATING PATH AMONG THE
CANDIDATE
C PATHS ENDING AT NODE I
C INP(J) : INDICATOR OF PATH J  IN THE MAIN PATH LIST
C = 1 IF PATH J  IS AMONG THE K MOST DOMINATING PATHS
AT
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C A PREDECESSOR NODE TO NODE I
C = 0 WHEN PATH J  IS DETERMINED TO BE ONE OF THE K
C MOST DOMINATING PATHS AND IS REMOVED FROM
FURTHER
C CONSIDERATION AT NODE I
C THE DISTRIBUTIONS OF THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C EACH NODE IN THE MAIN PATH LIST ARE IN XINT( 104,1 TO 500,-)
TOGETHER
C WITH VALUE(104,1 TO 5 0 0 ,- ,- ) .  THE DISTRIBUTIONS OF THE CANDIDATE
C PATHS AT NODE I  ARE IN XINT(103,1 TO 5 0 0 ,-) , VALUE(103,1 TO 500,-
( ■ )  •

C
DO 9110 I = 1,500 
DO 9100 J  = 1,10 
XINT(103,I , J )  = 0.0 
XINT(104,I,J) = 0.0 
VALUE(103,I , J , 1) = 0.0 
VALUE(103,I , J , 2) = 0.0 
VALUE(104,I , J , 1) = 0.0 
VALUE(104,I , J , 2) = 0.0 

9100 CONTINUE
XINT(103,I,11) = 0.0 
XINT(104,I , 11) = 0.0 

9110 CONTINUE
C
C INITIALIZE THE MAIN PATH LIST AT THE STARTING NODE.
C

NOPAT = 1 
NPP(1) = 1 
NPPA(1,1) = 1 
INP(l) = 1 
NPA(1,1) = 1 
NPA(1,2) = 1

C
C DO 9250 DETERMINES THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C EACH NODE.
C

DO 9250 I = 2,N 
NNN = NPATHS 
NPK = 0

C
C DO 9160 DETERMINES THE DISTRIBUTIONS OF THE (NO. OF PREDECESSORS
OF
C NODE I ) *NPATHS CANDIDATE PATHS AT NODE I .
C

DO 9160 J  = 1,NET(I,102)
ISNODE = IPRE( I , J ,1)
IACT = IPRE(I , J , 2)

C
C LOAD THE DISTRIBUTION OF THE ACTIVITY FROM NODE ISNODE TO NODE I
C INTO TEMPORARY LOCATION 1.
C

DO 9120 KK = 1,10
XINT(101 ,1 ,KK) = XINT(ISNODE, I ACT, KK)
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VALUE(101,1,KK,1) = VALUE(ISNODE,IACT,KK,1)
VALUE(101 ,1 ,KK,2) = VALUE(ISNODE,IACT,KK,2)

9120 CONTINUE
XINT( 101,1,11) =* XINT( ISNODE, IACT, 11)
DO 9150 K = 1 ,NPP(ISNODE)
NSS = NPFA(ISNODE,K)
NPK = NPK+1

C
C LOAD THE DISTRIBUTION OF THE RANK NSS PATH THROUGH NODE ISNODE IN 
THE
C MAIN PATH LIST INTO THE DISTRIBUTION OF THE RANK NPK PATH THROUGH
C NODE I IN THE CANDIDATE PATH LIST.
C

DO 9130 KK = 1,10
XINT(103,NPK,KK) = XINT(104,NSS,KK)
VALUE( 103,NPK,KK,1) = VALUE(104,NSS,KK,1)
VALUE( 103,NPK,KK,2) = VALUE(104,NSS,KK,2)

9130 CONTINUE
XINT(103,NPK,11) = XINT(104,NSS,11)

C
C CONVOLVE THE DISTRIBUTION OF THE RANK NSS PATH THROUGH NODE ISNODE
C IN THE MAIN PATH LIST AND ACTIVITY IACT AND PLACE THE CONVOLUTION
IN
C THE DISTRIBUTION OF THE RANK NPK PATH THROUGH NODE I IN THE MAIN
C PATH LIST.
C

IF (ISNODE .EQ. 1) THEN 
DO 9140 KK = 1,10 
XINT(103,NPK,KK) = XINT(101,1,KK)
VALUE( 103,NPK,KK,1) = VALUE(101,1,KK, 1)
VALUE( 103,NPK,KK,2) = VALUE(101,1,KK,2)

9140 CONTINUE
XINT(103,NPK,11) = XINT(101,1,11)
ELSE
CALL SERIES(103,NPK,101,1)
END IF
NPKl(NPK) = NSS 
NPK2(NPK) = ISNODE 

9150 CONTINUE 
9160 CONTINUE

IF (NPK .LT. NPATHS) NNN = NPK
C
C DO 9210 DETERMINES THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C NODE I FROM AMONG THE NPK CANDIDATE PATHS.
C

DO 9210 K = 1,NNN 
ISNOD2 * 0 
J  * 1

C
C THE J th  CANDIDATE PATH IS DESIGNATED THE CONTENDER FOR THE Kth
MOST
C STOCHASTICALLY DOMINATING PATH THROUGH NODE I .
C

9170 J2 = J
J1 = NPKl(J)
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c
C IF THE J th  CANDIDATE PATH IS ONE OF THE K MOST STOCHASTICALLY
DOMI-
C NATING PATHS THROUGH NODE I WHICH HAVE ALREADY BEEN DETERMINED
C [INP(NPK1(J)) = 0 ] ,  IT IS NOT FURTHER CONSIDERED.
C

IF (INP(Jl).EQ. 0) GO TO 9190 
NP(K) = J l  
NPR1(K) = J  
ISNODl = NPK2(J)

C
C THE J2 th  CANDIDATE PATH IS TESTED AGAINST THE J th  CANDIDATE PATH.
C

9180 J2 -  J2+1
C
C IF J2 > NPK, THE J th  CANDIDATE PATH IS THE Kth MOST STOCHASTICALLY
C DOMINATING PATH THROUGH NODE I .
C

IF (J2 .GT. NPK) GO TO 9200 
J3 = NPK1(J2)

C
C IF THE J2 th  CANDIDATE PATH IS ONE OF THE K MOST STOCHASTICALLY
DOMI-
C NATING PATHS THROUGH NODE I WHICH HAVE ALREADY BEEN DETERMINED
C [ INP(NPKl(J2 )) = 0 ] ,  IT IS NOT FURTHER CONSIDERED.
C

IF (INP(J3) .EQ. 0) GO TO 9180 
ISLAST = ISNOD2 
ISNOD2 = NPK2(J 2 )

C
C IF THE J th  AND J2 th  CANDIDATE PATHS HAVE THE SAME PREDECESSOR NODE
TO
C NODE I ,  THE J2 th  CANDIDATE PATH IS NOT FURTHER CONSIDERED, SINCE
THE
C K MOST STOCHASTICALLY DOMINATING PATHS THROUGH THAT PREDECESSOR
NODE
C ARE RANK-ORDERED, AND THE J th  PATH STOCHASTICALLY DOMINATES THE
J2th
C PATH. IF THE J2 th  AND THE (J 2 - l) th  CANDIDATE PATHS HAVE THE SAME
PRE-
C DECESSOR NODE TO NODE I ,  THE J2 th  CANDIDATE PATH IS AGAIN NOT
FURTHER
C CONSIDERED, SINCE THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C THAT PREDECESSOR NODE ARE RANK-ORDERED, AND THE (J 2 - l) th  PATH
STOCHAS-
C TICALLY DOMINATES THE J2 th  PATH, AND HENCE THE J th  PATH, WHICH
STO-
C CASTICALLY DOMINATES THE (J 2 - l) th  PATH, STOCHASTICALLY DOMINATES
THE
C J2th  PATH BY TRANSITIVITY.
C

IF ( ( ISNOD2 .EQ. ISNODl) .OR. (ISNOD2 .EQ. ISLAST)) GO TO 9180
C
C COMPUTE THE PROBABILITY THAT THE J th  CANDIDATE PATH STOCHASTICALLY
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c DOMINATES (DOMINATES IN PROBABILITY) THE J2 th  CANDIDATE PATH, I.E
c P( DISTRIBUTION OF J th  PATH DURATION > OR * DISTRIBUTION OF J2th
PATH
C
<-•

DURATION).
v-»
n

CALL COMPAR(103,J ,  103,J2,PR1GE2)
Var
c IF THE J th  CANDIDATE PATH STOCHASTICALLY DOMINATES THE J2 th
CANDIDATE
C PATH, THE J th  CANDIDATE PATH REMAINS THE CONTENDER FOR THE Kth
MOST
c STOCHASTICALLY DOMINATING PATH THROUGH NODE I ,  AND THE (J2 + l)th
CANDI
C DATE PATH IS TESTED NEXT.
L»
r» IF (PR1GE2 .GE. 0.5) GO TO 9180

c IF THE J2 th  CANDIDATE PATH STOCHASTICALLY DOMINATES THE J th
CANDIDATE
C PATH, THE J2 th  CANDIDATE PATH IS DESIGNATED THE CONTENDER FOR THE
Kth
C MOST STOCHASTICALLY DOMINATING PATH THROUGH NODE I ,  AND THE
(J2 + l)th
C
P CANDIDATE IS TESTED NEXT AGAINST THE CONTENDER.
W

NP(K) = J3
NPR1(K) = J2
J = J2
ISNODl = ISNOD2
GO TO 9180

9190 J = J+l
n

IF (J  .LE. NPK) GO TO 9170

c WHEN THE Kth MOST STOCHASTICALLY DOMINATING PATH HAS BEEN
DETERMINED,
C SET THE INDICATOR OF ITS PATH NUMBER IN THE MAIN PATH LIST = 0, SO
C THAT THE PATH IS NOT FURTHER CONSIDERED AT NODE I .
C

9200 INP(NP(K)) = 0 
9210 CONTINUE

C
C DO 9240 UPDATES THE MAIN PATH LIST AND PATH PARAMETERS.
C

NPP(I ) = NMN 
DO 9240 K = 1,NNN

C
C THE J th  PATH IN THE MAIN PATH LIST WAS THE Kth MOST STOCHASTICALLY
C DOMINATING PATH ENDING AT NODE I .  RESET THE INDICATOR OF THIS
PATH = 1.
C

J = NP(K)
INP(J) = 1

C
C THE Kth MOST STOCHASTICALLY DOMINATING PATH ENDING AT NODE I IS
NOW THE
C (NOPAT+K)th  PATH IN THE MAIN PATH LIST. SET THE INDICATOR OF THIS
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C PATH » 1.
C

J J  = NOPAT+K 
INP(JJ) = 1

C
C LOAD THIS PATH RANK INTO NPPA(I,K).
C

NPPA(I,K) * J J
C
C LOAD THE NODES OF THIS PATH INTO THE NPA ARRAY. NPA(I,1) IS THE
LENGTH
C OF THE I th  PATH IN THE MAIN PATH LIST.
C

NPA(JJ,1) = NPA(J,1)+l 
NPA(JJ,NPA(J,1)+2) = I 
DO 9220 KK = 2,NPA(J,1)+1 
NPA(JJ,KK) = NPA(J,KK)

9220 CONTINUE
C
C THE DISTRIBUTION OF THE Kth MOST STOCHASTICALLY DOMINATING PATH
ENDING
C AT NODE I IS THE DISTRIBUTION OF THE NPR1(K)th CANDIDATE PATH.
LOAD
C THIS DISTRIBUTION INTO THE DISTRIBUTION OF THE (NOPAT+K)th PATH IN
THE
C MAIN PATH LIST.
C

J1 = NPR1(K)
DO 9230 KK = 1,10
XINT(104,JJ,KK) = XINT(103,Jl,KK)
VALUE(104,JJ,K K ,1) = VALUE(103,J l  ,KK,1)
VALUE(104,JJ,KK,2) = VALUE(103, J l  ,KK,2)

9230 CONTINUE
XINT(104,J J , 11) = XINT(103,J l , 11)

9240 CONTINUE
C
C THE NUMBER OF PATHS IN THE MAIN PATH LIST IS NOW NOPAT+NNN.
C

NOPAT = NOPAT+NNN 
9250 CONTINUE

PRINT 9270 
PRINT 9280,NPATHS 
DO 9260 K = 1 ,NPATHS 
J J  = NPPA(N,K)
PRINT 9290,K,NPA(JJ,1 ) , (NPA(JJ,KK),KK = 2 ,NPA(JJ,1)+ l)

9260 CONTINUE 
9270 FORMAT (1H1)
9280 FORMAT (IX ,’THE ' , 1 1 , '  MOST STOCHASTICALLY DOMINATING PATHS ' ,

*•THROUGH THE NETWORK ARE: ')
9290 FORMAT ( /  IX, 'THE RANK ’ ,1 1 , ' PATH WITH ' , 1 3 , '  NODES:' /

* (IX ,2014 / ) )
RETURN
END

C END SUBROUTINE DOMPTH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

APPENDIX D

VALIDATION VERSION OF PART PROGRAM WITH 
“INDEPENDENT MULTIPLE ARCS” APPROXIMATION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

3 5 4

c 
c
C VALIDATION VERSION
C OF
C P O L Y G O N A L  A P P R O X IM A T IO N  A N D  R E D U C T IO N  T E C H N I Q U E
C ( P A R T )
C ALGORITHM
C FOR
C ACYCLIC, DIRECTED NETWORKS
C USING
C "INDEPENDENT MULTIPLE ARCS" NETWORKS
C TO APPROXIMATE
C NONSEPARABLE NETWORKS
C 
C
C THIS PROGRAM GENERATES "STRONGLY RANDOMIZED NETWORKS," REDUCES
C THEM WITH THE PART ALGORITHM USING "INDEPENDENT MULTIPLE ARCS"
C NETWORKS TO APPROXIMATE NONSEPARABLE NETWORKS, SIMULATES THEM,
C AND OUTPUTS STATISTICAL COMPARISONS OF THE PART-APPROXIMATED
C AND SIMULATED NETWORK THROUGHPUT DISTRIBUTIONS. THE PROGRAM IS
C IS WRITTEN IN FORTRAN 77 AND IS PRESENTLY DESIGNED TO BE OPERATED
C IN A TIME SHARING MODE WITH ALL DATA INPUT FROM TWO (2) DATA
C FILES. THE PROGRAM DIRECTS OUTPUT IN NINE (9) OPTIONAL FORMATS
C TO A TIME SHARING TERMINAL. IF DESIRED, THE READ STATEMENTS AT
C THE BEGINNING OF THE MAIN PROGRAM CAN BE MODIFIED TO ALLOW DATA
C INPUT DIRECTLY FROM THE TIME SHARING TERMINAL.
C
C THE CURRENT DIMENSIONS OF THE PROGRAM ALLOW A NETWORK WITH A
C MAXIMUM OF 100 NODES AND A MAXIMUM OF 99 ACTIVITIES BEGINNING
C AT EACH NODE. THESE LIMITS CAN BE EXPANDED BY CHANGING THE
C DIMENSIONS OF THE XINT AND VALUE ARRAYS.
C
C
c ***********************************************************
C
C O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
c INSTRUCTIONS FOR BUILDING DATA FILES
C -------------------------------------
C
C DATA FILE DATAH.VAL
C
C THIS DATA FILE CONTAINS DESCRIPTIONS OF THE PRECODED DISTRIBUTIONS 
C OF ACTIVITY DURATION.
C
C THERE ARE 5 FIELDS OF DATA.
C FIELD 1 IS THE CODE FOR THE TYPE OF DISTRIBUTION.
C 1 = TRIANGULAR DISTRIBUTION
C 2 = NORMAL DISTRIBUTION
C 3 = EXPONENTIAL DISTRIBUTION
C 4 = GAMMA DISTRIBUTION
C 5 = BETA DISTRIBUTION
C 6 = UNIFORM DISTRIBUTION
C FIELD 2 IS
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C MODE FOR A TRIANGULAR DISTRIBUTION.
C MEAN FOR A NORMAL DISTRIBUTION.
C MEAN FOR AN EXPONENTIAL DISTRIBUTION.
C ALPHA FOR A GAMMA OR A BETA DISTRIBUTION.
C 1/(B-A) FOR A UNIFORM DISTRIBUTION.
C FIELD 3 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION.
C FIELD 4 IS THE MINIMUM VALUE OF THE DISTRIBUTION.
C FIELD 5 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.
C
C
C DATA FILE CONTROL.VAL
C
C THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL
C PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.
C
C THERE ARE 6 FIELDS OF DATA.
C FIELD 1 IS THE NUMBER OF NETWORKS TO BE GENERATED (MAXIMUM = 100).
C FIELD 2 IS THE NUMBER OF NODES IN THE NETWORK.
C 0 = NUMBER OF NODES IS TO BE RANDOMLY GENERATED.
C FIELD 3 IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
C 0 = NUMBER OF ACTIVITIES IS TO BE RANDOMLY GENERATED.
C FIELD 4 IS THE OUTPUT OPTION DESIRED FOR THE PART RESULTS.
C 1 = A DESCRIPTION OF EACH OF THE 10 CLASSES OF THE
C FINAL DISTRIBUTION IN THE FORM OF Y = B(O) + B(l) X.
C 2 = A CUMULATIVE DISTRIBUTION FUNCTION OF THE FINAL
C DISTRIBUTION.
C 3 = A DISCRETE PROBABILITY DENSITY FUNCTION AND A
C SIMULATION FREQUENCY HISTOGRAM IN GRAPHICAL FORMAT.
C 4 = A COMBINATION OF 1 AND 2 ABOVE.
C 5 = A COMBINATION OF 1 AND 3 ABOVE.
C 6 = A COMBINATION OF 2 AND 3 ABOVE.
C 7 = A COMBINATION OF 1, 2, AND 3 ABOVE.
C 8 = ONLY THE EXPECTED VALUE AND STANDARD DEVIATION.
C 9 = ONLY STATISTICAL COMPARISONS.
C FIELD 5 IS THE NUMBER OF ITERATIONS OF THE MONTE CARLO
C SIMULATION REQUESTED (MAXIMUM = 10,000).
C 0 = NO MONTE CARLO SIMULATION IS REQUESTED.
C FIELD 6 IS THE NUMBER OF PRECODED DISTRIBUTIONS (MAXIMUM =20).
C
C
C NOTE
C
C ALL UNUSED FIELDS MUST BE ZEROED OUT.
C
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C M A I N  P R O G R A M
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
REAL*8 XINT(200,99,12),VALUE(200, 99,10,3),A(130)
REAL*8 ZVAL(130,5),XX(100,2),TOTAAR(51),COMPAR(200,4)
REAL*8 S I M T (100,10000),S I M T O T (51), D I S T ( 20,5)
REAL*8 AREA,AVG,COUNT,SIG,SIZE
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* ,X,XSIZE
* ,DIFF
REAL* 4 HIGH, HLOW, PERCNT,KSCR2 0,KSCR10,KSCRO 5,KSCRO 2,KSCRO 1, DMAX
* ,AMEAN,ASTD,RN,STEP,UP,XT
INTEGER I,IDUAL,IEDN,IPRINT,ISTN, ISTNP,ISEED,ICODED,IFLAG
* , MM
* ,N, NACT , NACTS, NAN, NCL, NET, NETT, NSIM, NSTART, NGEN , NGENCT
* , NCODED, NCROSS , NNEW, NNODES , NACTSS
* ,J,Jl,J3
* ,K,KK
* ,L,L1,L2,L3,L4,LASTK,LA,L3COUNT
* ,UA
REAL*4 DELTA,TOTTIM
DIMENSION NET(200,103),NNODES(100),NCROSS(100)
COMMON/PARA1/XINT,VALUE 
COMMON/PARA2/ZVAL 
COMMON/PARA3/A 
COMMON/PARA4/XX 
COMMON/PARA5/NET 
COMMON/PARA6/SIMT 
CHARACTER*1 KBL,KBM 
DATA KBL/’ '/,KBM/’*’/
DATA NCL/0/
DATA TOTTIM/0.0/
EXTERNAL RNSET,RNNOR,RNUN
INITIALIZE RANDOM NUMBER GENERATOR.
ISEED = 123456789 
CALL RNSET(ISEED)
OPEN INPUT AND OUTPUT FILES
OPEN (UNIT = 12, FILE = 'datah.val')
OPEN (UNIT =* 13, FILE = 'control.val ’)
READ CONTROL INFORMATION.
READ (13,1900) NGEN,N,NACTS,NAN,NSIM,NCODED 
NSTART = N 
NACTSS = NACTS
DO 0900 READS DISTRIBUTION DATA FROM DATAH.VAL AND LOADS IT 
INTO THE DIST ARRAY.
DO 0900 I = 1,NCODED
READ (12,1902) (DIST(I,J), J=l,5)

0900 CONTINUE
STEP = 1.0/REAL(NCODED)
DO 1530 GENERATES, REDUCES, SIMULATES, AND STATISTICALLY COMPARES 
NGEN "STRONGLY RANDOMIZED NETWORKS."
DO 1530 NGENCT = 1,NGEN 
CALL TIMER(DELTA)
N = NSTART
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N A C T S  =  N A C T S S  
N C R O S S ( N G E N C T) = 0
R A N D O M L Y  G E N E R A T E  T H E  N U M B E R  O F  N O D E S  ( N ) ,  I F  N E C E S S A R Y .

IF (N .GT. 0) GO TO 0910 
CALL RNUN(1,RN)
XT = 2.0+(99.0*RN)
N  =  I N T ( X T )
IF (N .GT. 100) N = 100
R A N D O M L Y  G E N E R A T E  T H E  N U M B E R  O F  A C T I V I T I E S  ( N A C T S ) ,  I F  N E C E S S A R Y .

0910 IF (NACTS .GT. 0) GO TO 0920 
L A  =  N - l  
UA = N*(N-l)/2
AMEAN = ( (REAL(LA+UA) )/2.0)-( ( (REAL(UA-LA) )**2)/500.0)
ASTD = (REAL(UA-LA))/2.5 
CALL RNNOR(1,RN)
X T  =  ( R N * A S T D ) + AM EAN 
N A C T S  =  I N T ( X T )
I F  ( N A C T S  . L T .  L A )  N A C T S  =  L A  
I F  ( N A C T S  . G T .  U A ) N A C T S  =  UA

R A N D O M L Y  G E N E R A T E  T H E  N E T W O R K  ( N E T  A R R A Y ) .

0920 CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
CALL GENRAN(N,NACTS)
C A L L  T I M E R ( D E L T A )

DO 0970 RANDOMLY SELECTS ONE OF THE PRECODED DISTRIBUTIONS 
FOR EACH ACTIVITY AND LOADS THE DISTRIBUTION’S DATA INTO 
THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF 
THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
AND, IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A 
PIECEWISE POLYGONAL FUNCTION.
DO 0970 I = 1,N-l 
Ll = I
DO 0960 J = 1,NET(I,103)
L2 = J
CALL RNUN(1,RN)
UP * 0.0
DO 0930 K = 1,NCODED 
UP = UP+STEP
IF (RN .GT. UP) GO TO 0930 
ICODED = K 
GO TO 0940 

0930 CONTINUE
0940 VALUE(Ll,L2,1,3) = DIST(ICODED,1)

VALUE(Ll,L2,2,3 ) = DIST(ICODED,2)
VALUE(Ll,L2,3,3 ) = DIST(ICODED,3)
XINT(L1,L2,1) = DIST(ICODED,4)
XINT(L1,L2,2) = DIST( ICODED,5)
IF (IDINT(VALUE(L1,L2,1,3)) .NE. 6) THEN
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CALL LINEAR(Ll,L2,NCL)
GO TO 0960
DO 0950 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE 
FORM FOR SUBROUTINES SERIES AND PARA.
E L S E
XINT(Ll /L2,11) = XINT(L1,L2,2)
X = XINT(L1,L2,1)
XSIZE - (XINT(Ll,L2,2)-XINT(Ll,L2,1))/10.
DO 0950 K * 1,10
VALUE(Ll ,L2,K,1) = VALUE(Ll,L2,2,3)
VALUE(L1,L2,K,2) = 0.0 
XINT(Ll,L2,K ) = X 
X = X+XSIZE 

0950 CONTINUE 
END IF 

0960 CONTINUE 
0970 CONTINUE

M O N T E  C A R L O  S I M U L A T IO N  O F  T H E  N E T W O R K .

IF (NSIM -EQ. 0) GO TO 1030 
CALL TIMER (DELTA)
T O T T I M  =  T O T T IM + D E L T A  
C A L L  S I M U L T ( N , N S I M )
CALL TIMER (DELTA)
R E D U C T IO N  O F  T H E  N ET W O R K  B E G I N S .

DO 1040 CHECKS IF A CONVOLUTION (SERIES-REDUCTION) OPERATION 
IS POSSIBLE, i.e., IF THERE EXISTS A NODE I NOT ON THE OUTPUT 
CRITICAL LIST SUCH THAT

IN-DEGREE NODE I = OUT-DEGREE NODE 1 = 1 .
1030 L3COUNT = 2 
1035 DO 1040 I=L3COUNT,N-l 

L3 = I
IF ((NET(I,102)+NET(I,103)) .EQ. 2) GO TO 1050 

1040 CONTINUE
IF (IN-DEGREE NODE I + OUT-DEGREE NODE I) > 2 FOR ALL I NOT = 1 
OR N, NETWORK IS NONSEPARABLE, SO PROCEED TO "INDEPENDENT 
MULTIPLE ARCS" APPROXIMATION.
IF (L3COUNT .EQ. 2) GO TO 1145 
GO TO 1080
A CONVOLUTION IS POSSIBLE WITH THE TWO ACTIVITIES, ONE OF WHICH 
TERMINATES AT NODE L3 AND THE OTHER OF WHICH STARTS AT NODE L3. 
DO 1060 IDENTIFIES THE STARTING NODE NUMBER AND THE ACTIVITY 
NUMBER OF THE ACTIVITY TERMINATING AT NODE L3. THEN THE SERIES 
SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES IS CONVOLUTED INTO 
AN EQUIVALENT ACTIVITY.

1050 DO 1060 I=1,L3-1
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DO 1060 J=2,NET(I,103)+1 
Ll = I 
L2 = J - l
IF (NET(I,J) .EQ. L3) GO TO 1070 

1060 CONTINUE
1070 CALL SERIES(Ll,L2,L3,l)

NET(L1,L2+1) = NET(L3,2)
NET(L3,2) = 0 
NET(L3,101) = 0 
NET(L3,102) = 0 
NET(L3,103) -  0 
L3COUNT = L3+1
IF (L3COUNT .EQ. N) GO TO 1080 
GO TO 1035

C
C DO 1140 CHECKS IF A MAXIMUM (PARALLEL-REDUCTION) OPERATION IS
C POSSIBLE, i . e . ,  IF THERE EXIST TWO DIFFERENT ACTIVITIES, Al AND
C A2, SUCH THAT
C STARTING NODE (Al) = STARTING NODE (A2), AND
C ENDING NODE (Al) = ENDING NODE (A2).
C THEN THE PARALLEL SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES
C IS PARALLEL-REDUCED WITH A MAXIMUM OPERATION INTO AN EQUIVALENT
C ACTIVITY.
C

1080 DO 1140 1=1,N-l 
Ll = I

1085 DO 1090 J=2,NET(L1,103)
L2 = J - l
IF (NET(L1, J) .EQ. 0) GO TO 1140 
DO 1090 K=J+1,NET(L1,103)+l 
L3 = K-l
IF (NET(L1,J) .EQ. NET(L1,K)) THEN 
IEDN = NET(Ll, J)
GO TO 1110 
ELSE
GO TO 1090 
END IF 

1090 CONTINUE
GO TO 1140 

1110 CALL PARA(L1,L2,L3)
NET(L1,103) = NET(L1,103)-1 
NET(IEDN,102) = NET(IEDN,102)-1 
DO 1120 K=L3,NET(Ll,103)
NET(Ll,K+1) = NET(Ll,K+2)
DO 1115 L=l,10
XINT(L1,K,L)= XINT(Ll,K+1, L)
VALUE(Ll,K,L,l) = VALUE(Ll,K+1,L,1)
VALUE(Ll,K,L,2) = VALUE(Ll,K+1,L,2)

1115 CONTINUE
XINT(L1,K,11) = XINT(L1,K +l,11)

1120 CONTINUE
K = NET(Ll,103)+1 
NET(Ll,K+l) = 0 
DO 1130 L=1,10 
XINT(L1,K,L) = 0.
VALUE(Ll,K,L,1) = 0.
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VALUE(L l,K, L,2) = 0.
1130 CONTINUE

XINT(L1,K,11) = 0.
GO TO 1085 

1140 CONTINUE
GO TO 1030

C
C THROUGH 1146 CHECKS IF THE NETWORK HAS BEEN SERIES-PARALLEL
C REDUCED TO A SINGLE EQUIVALENT ACTIVITY.
C

1145 IF (NET(1,103) .NE. 1) GO TO 1147
IF (NET(N,102) .NE. 1) GO TO 1147
DO 1146 1=2,N-l
IF (NET(I,102) + NET(I,103)) 1550,1146,1147

1146 CONTINUE
C
C THE NETWORK HAS BEEN SERIES-PARALLEL REDUCED TO A SINGLE EQUIVA-
C LENT ACTIVITY.
C

NNODES(NGENCT) = N 
GO TO 1240

C
C TO 1240 REDUCES THE NONSEPARABLE NETWORK USING "INDEPENDENT MULTI-
C PLE ARCS" APPROXIMATION WITH THE "FIRST AVAILABLE ARC WITH
PROPERTY 
C 1" METHOD.
C

1147 NCROSS(NGENCT) = NCROSS(NGENCT)+l
C
C DO 1148 IDENTIFIES THE START NODE ISTN OF THE FIRST AVAILABLE
C CROSS-CONNECTION IN THE NONSEPARABLE NETWORK.
C

DO 1148 1=2,N-2
IF ( (NET(I,102) .EQ. 1) .AND. (NET(I,103) .GT. 1)) THEN 
ISTN = I 
GO TO 1149 
ELSE
GO TO 1148 
END IF

1148 CONTINUE
C
C THROUGH 1151 IDENTIFIES THE START NODE ISTNP AND THE ACTIVITY
C NUMBER IDUAL OF THE SINGLE ACTIVITY TERMINATING AT NODE ISTN.
C THIS ACTIVITY IS THE "A" ACTIVITY CONNECTING NODE ISTNP AND NODE
C ISTN WHICH MUST BE "INDEPENDENTLY MULTIPLIED."
C

1149 DO 1151 1=1,N-3
DO 1150 J=2,NET(I,103)+l
IF (NET(I,J) .EQ. ISTN) THEN
ISTNP = I
IDUAL = J - l
GO TO 1152
ELSE
GO TO 1150 
END IF

1150 CONTINUE
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1151

1152

1153

1154

1155

1156

1157

CONTINUE
NDUAL IS THE NUMBER OF "INDEPENDENT MULTIPLES" OF ACTIVITY IDUAL 
WHICH MUST BE INSERTED INTO THE NETWORK.

NDUAL = NET(ISTN,103)-1 
NNEW = N+NDUAL

DO 1153 INCREASES NODE NUMBERS ABOVE ISTN BY NDUAL.

DO 1153 J=1,N
DO 1153 J1=1,NET(J,103)+l
IF (NET(J,J1) .GT. ISTN) NET(J,Jl) = NET(J , J l )+NDUAL 
CONTINUE

DO 1154 SHIFTS ROWS OF NET ARRAY, FROM N DOWN TO ISTN+1, AHEAD 
NDUAL ROWS.

DO 1154 J=NNEW,ISTN+NDUAL+1, —1
DO 1154 J l = l , 103
NET(J,J1) = NET(J-NDUAL,Jl)
NET(J-NDUAL, J l )-0 
CONTINUE

DO 1155 INSERTS NDUAL NODES AFTER NODE ISTN FOR NDUAL "INDEPENDENT 
MULTIPLES" OF THE "PROPERTY 1" ACTIVITY IN THE NET ARRAY.

DO 1155 J=ISTN+1, ISTN+NDUAL 
NET(J,1) = J
NET(J,2) = NET(ISTN,J-ISTN+2)
NET( ISTN, J-ISTN+2) = 0 
NET(J,101) » 1 
NET(J,102) “ 1 
NET(J,103) * 1 
CONTINUE
NET(ISTN,103) = 1

DO 1156 SHIFTS THE TERMINATING NODE NUMBERS OF ACTIVITIES STARTING 
AT NODE ISTNP AFTER ISTN AHEAD NDUAL POSITIONS IN THE NET ARRAY.

DO 1156 J=NET(ISTNP,103)+NDUAL+1, IDUAL+NDUAL+2,-1  
NET(ISTNP,J) = NET(ISTNP,J-NDUAL)
NET(ISTNP,J-NDUAL) = 0 
CONTINUE

DO 1157 INSERTS NDUAL NODES -  ISTN+1, . . . , ISTN+NDUAL -  AS THE 
TERMINATING NODES OF THE "INDEPENDENTLY MULTIPLIED" "A" ACTIVITY 
FROM NODE ISTNP IN THE NET ARRAY.

DO 1157 J=l,NDUAL
NET(ISTNP,IDUAL+J+1) = ISTN+J
CONTINUE
NET(ISTNP,103) = NET(ISTNP,103)+NDUAL

DO 1158 SHIFTS ROWS OF XINT ARRAY, FROM N DOWN TO ISTN+1, AHEAD 
NDUAL ROWS.
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c
DO 1158 J=NNEW,ISTN+NDUAL+1,-1  
DO 1158 J l= l ,99 
DO 1158 J2= l,12
X IN T(J,Jl,J2) =* XINT(J-NDUAL,J1,J2)
XINT(J-NDUAL,Jl,J2) = 0.

1158 CONTINUE
C
C DO 1159 SHIFTS ACTIVITY LINEARIZATION POINTS FOR ACTIVITIES
C 2, . .  . , NDUAL+1 FROM NODE ISTN TO THE FIRST AND ONLY ACTIVITIES
C FROM THE NEW NODES - ISTN+1ISTN+NDUAL -  IN THE XINT ARRAY.
C

DO 1159 Jl=l,NDUAL 
DO 1159 J2= l,12
XINT( ISTN+J1,1 , J2 ) = XINT( ISTN, Jl+ 1 , J2 )
XINT( ISTN,Jl+1,J2) = 0.

1159 CONTINUE
C
C DO 1160 SHIFTS ACTIVITY LINEARIZATION POINTS FOR ACTIVITIES
C AFTER IDUAL FROM NODE ISTN AHEAD NDUAL POSITIONS IN THE XINT
ARRAY.
C

DO 1160 Jl=NET(ISTNP,103),IDUAL+NDUAL+1,-1  
DO 1160 J 2 = l,12
XINT( ISTNP,Jl,J2) = XINT(ISTNP,Jl-NDUAL,J2)
XINT(ISTNP,Jl-NDUAL,J2) = 0.

1160 CONTINUE
C
C DO 1161 INSERTS NDUAL COPIES OF THE ACTIVITY LINEARIZATION POINTS
C OF ACTIVITY IDUAL FROM NODE ISTNP TO THE NEW NODES -  IS TN +1,...,
C ISTN+NDUAL -  IN THE XINT ARRAY.
C

DO 1161 Jl=l,NDUAL 
DO 1161 J2= l,12
XINT( ISTNP,IDUAL+J1,J2) = XINT(ISTNP,IDUAL,J2)

1161 CONTINUE
C
C DO 1162 SHIFTS ROWS OF VALUE ARRAY, FROM N DOWN TO ISTN+1, AHEAD
C NDUAL ROWS.
C

DO 1162 J=NNEW,ISTN+NDUAL+1,-1  
DO 1162 J l= l ,99 
DO 1162 J2= l,10 
DO 1162 J3= l,3
VALUE(J , J l , J2 , J 3 ) = VALUE(J-NDUAL,Jl,J2,J3)
VALUE(J-NDUAL,Jl,J2,J3) = 0.

1162 CONTINUE
C
C DO 1163 SHIFTS ACTIVITY POLYGONAL APPROXIMATION COEFFICIENTS FOR
C ACTIVITIES 2 , ------NDUAL+1 FROM NODE ISTN TO THE FIRST AND ONLY
C ACTIVITIES FROM THE NEW NODES -  ISTN+1, . . . , ISTN+NDUAL -  IN THE
C VALUE ARRAY.
C

DO 1163 Jl=l,NDUAL 
DO 1163 J2= l,10 
DO 1163 J3= l,3
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VALUE(ISTN+J1,1,J2,J3) = VALUE(IS T N ,Jl+1,J2 ,J3)
VALUE( ISTN, J l+ 1 ,J 2 , J3 ) = 0.

1163 CONTINUE
C
C DO 1164 SHIFTS ACTIVITY POLYGONAL APPROXIMATION COEFFICIENTS FOR
C ACTIVITIES AFTER IDUAL FROM NODE ISTNP AHEAD NDUAL POSITIONS IN
THE
C VALUE ARRAY.
C

DO 1164 J1=NET(ISTNP,103),IDUAL+NDUAL+1,-1 
DO 1164 J 2 = l,10 
DO 1164 J 3 = l,3
VALUE(ISTN P,Jl,J2,J3) = VALUE (ISTNP, J1-NDUAL,J2 , J 3 )
VALUE(ISTNP,J1-NDUAL,J2,J3) = 0.

1164 CONTINUE
C
C DO 1165 INSERTS NDUAL COPIES OF THE ACTIVITY POLYGONAL APPROXIMA-
C TION COEFFICIENTS OF ACTIVITY IDUAL FROM NODE ISTNP TO THE NEW
C NODES -  ISTN+1ISTN+NDUAL -  IN THE VALUE ARRAY.
C

DO 1165 Jl=l,NDUAL 
DO 1165 J 2 = l,10 
DO 1165 J3 = l,3
VALUE ( ISTNP, IDUAL+J1, J2 , J3 ) = VALUE ( ISTNP, IDUAL, J 2 , J3 )

1165 CONTINUE 
N = NNEW 
GO TO 1030

C
C AT THIS POINT IN THE MAIN PROGRAM ALL CALCULATIONS HAVE
C BEEN COMPLETED AND DATA IS PREPARED FOR FINAL OUTPUT.
C

1240 IF (NAN .NE. 9) THEN 
PRINT 1910
PRINT 1915,NGENCT,NGEN 
ELSE
GO TO 1245 
END IF 

1245 L = 1 
KK =  0
DO 1270 I = 1,10

C
C THE XX ARRAY IS USED FOR HISTOGRAM AND CDF CALCULATIONS.
C

XX(1,1) = XINT(1,1 ,1)
SIZE = (XINT(1 ,1 ,2 ) -XINT(1 ,1 ,1) ) /5 .
LASTK = L+4 
DO 1250 K = L,LASTK 
KK = KK+1
XX(K,2) = VALUE ( l , l , I , l )  + (VALUE( 1 ,1 ,1 ,2 )*XX(K,1 ))
IF ((KK .LE. 1 ) .AND.(L .GT. 4)) XX(K,2) = ( ( ( VALUE(1 ,1 ,1 ,2) 

&*XX(K,1 ))+VALUE(1 ,1 ,1 ,1 ))  + (VALUE ( 1 ,1 ,I - 1 ,2 )*XX(K,1)) +
&VALUE(1 ,1 ,1 -1 ,1 ) ) /2 .

XX(K+1,1) = XX(K,1)+SIZE 
1250 CONTINUE 

KK = 0 
L = L+5
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IF ((NAN .EQ. 1 ) .OR.(NAN .EQ. 4 ) .OR.(NAN .EQ. 5 ) .OR.
&(NAN .EQ. 7)) GO TO 1260 
GO TO 1270 

1260 IF (I  .EQ. 1) PRINT 1920
PRINT 1930,I,XINT(1 ,1 ,1 ) ,XINT(1,1,1+1)
PRINT 1940,VALUE(1 ,1 ,1 ,1 ) ,VALUE( 1 ,1 ,I , 2)

1270 CONTINUE
XX(51,2)=VALUE(1 ,1 ,1 0 ,1 )+VALUE(1 ,1 ,1 0 ,2 )*XX(51,1)

C
C TOTAAR IS USED FOR CDF CALCULATIONS.
C

AREA = 0.0 
DO 1280 I  = 1,50
AREA = AREA+((XX(I,2)+XX(1+1,2))*SIZE*.5)
TOTAAR(I ) = AREA 

1280 CONTINUE
AREA = 1.0/AREA 
DO 1290 I  = 1,50 
TOTAAR(I) = TOTAAR(I ) * AREA 

1290 CONTINUE
DO 1295 I  = 51,2 ,-1  
TOTAAR(I) = TOTAAR(I - 1)

1295 CONTINUE
TOTAAR(l) = 0.0 
XX(1,1) = XINT(1,1,1)
IF (NAN .EQ. 9) GO TO 1350
IF ((NAN .EQ. 2 ) .OR.(NAN .EQ. 4 ) .OR.(NAN .EQ. 6 ) .OR.

&(NAN .EQ. 7)) GO TO 1300 
GO TO 1320 

1300 PRINT 1910 
PRINT 1950 
DO 1310 I  = 1,51 
PRINT 1960,XX(I,1),TOTAAR(I)

1310 CONTINUE
1320 IF ((NAN .EQ. 3 ) .OR.(NAN .EQ. 5 ) .OR.(NAN .EQ. 6 ) .OR.

&(NAN .EQ. 7)) GO TO 1330 
GO TO 1340 

1330 IPRINT = 51 
IFLAG = 0
CALL PLOT(IPRINT,KBL,KBM,IFLAG)

1340 CONTINUE
C
C DO 1360 COMPUTES AN APPROXIMATED EXPECTED VALUE USING
C GROUPED DATA. DO 1370 COMPUTES AN APPROXIMATED STANDARD
C DEVIATION.
C

1350 AVG = 0.0 
SIG = 0.0 
DO 1360 MM = 1,50
AVG = AVG+( (XX(MM, 1) + (SIZE/2 .) )* (TOTAAR (MM+1)-TOTAAR (MM) )) 

1360 CONTINUE
COMPAR(NGENCT,3) = AVG 
DO 1370 MM = 1,50
SIG = SIG+( ( (XX(MM,l) + (SIZE/2.)-AVG)**2)*(TOTAAR(MM+l)-

STOTAAR(MM)))
1370 CONTINUE
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SIG = DSQRT(SIG)
COMPAR(NGENCT,4) = SIG
IF (NAN .EQ. 9) GO TO 1390
PRINT 1910
PRINT 1970,AVG,SIG
DO 1380 MM = 1,4
HLOW = AVG—(FLOAT(MM)*SIG)
HIGH = AVG+(FLOAT(MM)*SIG)

C
C THESE ARE FIXED PERCENTAGES. THE ASSUMPTION IS MADE THAT
C THE FINAL PRODUCT HILL RESEMBLE A NORMAL DISTRIBUTION. THEY
C CORRESPOND TO 1, 2, 3, AND 4 STANDARD DEVIATIONS RESPECTIVELY.
C

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT = 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
PRINT 1980,HLOW,HIGH,PERCNT 

1380 CONTINUE
1390 IF (NSIM .EQ. 0) GO TO 1530

C
C THROUGH 1500 COMPILES OUTPUT FROM THE MONTE CARLO SIMULATION.
C
C DO 1410 COMPILES THE CUMULATIVE DISTRIBUTION FUNCTION.
C

COUNT = 0 . 0  
SIMTOT(l) = 0 . 0  
DO 1410 J  = 1,50
DO 1400 K = 1 ,NSIM
IF ( ( XX(J,1) .LE. SIMT(NSTART,K)) .AND. (SIMT(NSTART,K) .LT. 

&XX(J+1,1))) COUNT = COUNT+1.
1400 CONTINUE

XX(J+1,2) =* COUNT/DFLOAT(NSIM)
SIMTOT(J+l) = SIMTOT(J)+XX(J+1,2)
COUNT = 0 . 0  

1410 CONTINUE
IF (NAN .EQ. 9) GO TO 1450 
PRINT 1910 
PRINT 1925
IF ((NAN .EQ. 2) .OR. (NAN .EQ. 4) .OR. (NAN .EQ. 6) .OR.

&(NAN .EQ. 7)) GO TO 1420 
GO TO 1440 

1420 PRINT 1950
DO 1430 J  = 1,51
PRINT 1960, XX( J,l),SIMTOT(J)

1430 CONTINUE
1440 IF ((NAN .EQ. 3) .OR. (NAN .EQ. 5) .OR. (NAN .EQ. 6) .OR.

&(NAN .EQ. 7)) GO TO 1450 
GO TO 1470 

1450 DO 1460 J  = 1,50
XX(J,1) = XX(J,1) + (SIZE/2 . )
XX(J,2) = XX(J+1,2)

1460 CONTINUE
IF (NAN .EQ. 9) GO TO 1475 
IPRINT = 50 
IFLAG = 1
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CALL PLOT( IPRINT,KBL,KBM, IFLAG)
1470 CONTINUE

DO 1480 COMPUTES AN APPROXIMATED EXPECTED VALUE AND 
DO 1490 COMPUTES AN APPROXIMATED STANDARD DEVIATION 
USING GROUPED DATA.

1475 AVG = 0 . 0  
SIG = 0 . 0  
DO 1480 J  = 1,50
AVG = AVG+(XX(J,l)*(SIMTOT(J+l)-SIMTOT(J)))

1480 CONTINUE
DO 1490 J  = 1,50
SIG = SIG+( ( (XX( J , 1)-AVG) **2) * (SIMTOT( J+ l )-SIMTOT( J) ) )

1490 CONTINUE
SIG = DSQRT(SIG)
IF (NAN .EQ. 9) GO TO 1505
PRINT 1910
PRINT 1970,AVG,SIG
DO 1500 MM = 1,4
BLOW = AVG—(FLOAT(MM)*SIG)
HIGH = AVG+(FLOAT (MM)*SIG)

IT IS ASSUMED THAT THE DISTRIBUTION THROUGH NODE I  RESEMBLES 
A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO 
1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE 
EXPECTED VALUE.

IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT = 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
PRINT 1980,HLOW,HIGH,PERCNT 

1500 CONTINUE

COMPUTE RELATIVE ERROR OF APPROXIMATED MEAN AND STANDARD DEVIATION 
OF NETWORK THROUGHPUT DISTRIBUTION.

1505 COMPAR (NGENCT, 3) = ( (COMPAR (NGENCT, 3J-AVG)/AVG) *100.0 
COMPAR(NGENCT,4) = ( ( COMPAR(NGENCT,4 )-SIG )/SIG )*100.0

COMPARE POLYGONAL APPROXIMATION OF THROUGHPUT DISTRIBUTION 
WITH SIMULATED THROUGHPUT DISTRIBUTION USING THE KOLMOGOROV- 
SMIRNOV ONE-SAMPLE TEST.

KSCR20 = 1 .0730/SQRT(50.)
KSCR10 = 1 .2239/SQRT(50.)
KSCR05 = 1 .3581/SQRT(50.)
KSCR02 = 1 .5174/SQRT(50.)
KSCR01 = 1 .6276/SQRT(50.)

COMPUTE THE K-S TEST STATISTIC D-MAX.

DMAX = 0 . 0  
DO 1520 I = 2,51
DIFF = DABS(SIMTOT(I)-TOTAAR(I))
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.AND. (DMAX .LE. KSCR10))

.AND. (DMAX .LE. KSCRO5))

.AND. (DMAX .LE. KSCR02))

.AND. (DMAX .LE. KSCRO1))

I F  ( D I F F  .GT. D M A X ) DMAX = D I F F  
1520 CONTINUE

IF (NAN .NE. 9) THEN 
PRINT 1910 
PRINT 1991,DMAX
PRINT 1992,KSCR2 0 ,KSCR10,KSCR05,KSCR02, KSCRO1 
IF (DMAX .IE . KSCRO5) PRINT 1993 
E L S E
COMPAR(NGENCT,1) = DMAX 
COMPAR(NGENCT,2) = 0 . 0
I F  (DMAX .LE. KSCR20) COMPAR( NGENCT,2 ) = 2 0 . 0  
I F  ((DMAX .GT. KSCR2I 

*COMPAR(NGENCT,2) = 10.0 
I F  ((DMAX .GT. KSCR10)

*COMPAR(NGENCT,2) = 5 . 0  
IF ((DMAX .GT. KSCR05)

* COMPAR(NGENCT,2) = 2 . 0  
IF ((DMAX .GT. KSCR02)

‘COMPAR(NGENCT,2) = 1.0 
END IF
CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 

1530 CONTINUE
IF (NAN .NE. 9) THEN 
PRINT 1996,TOTTIM 
STOP 
ELSE
P R I N T  1994,N G E N , N S T A R T , N A C T S S
PRINT 1992 ,KSCR20, KSCR10,KSCR05, KSCR02, KSCRO 1
PRINT 1995
CALL TIMER(DELTA)
DO 1540 I = 1,NGEN
IF (COMPAR(1,2) .EQ. 0.0) PRINT 1981,COMPAR(I,1)

‘COMPAR(1 ,4 ) ,NNODES( I ) , NCROSS(I )
IF (COMPAR(I,2) .EQ. 1.0) PRINT 1982,COMPAR(I,l)

‘COMPAR(1,4 ) ,NNODES(I ) , NCROSS(I )
IF (COMPAR(1,2) .EQ. 2.0) PRINT 1983,COMPAR(I,1)

‘COMPAR(1 ,4 ) ,NNODES( I ) , NCROSS(I )
IF (COMPAR(1,2) .EQ. 5.0) PRINT 1984,COMPAR(1,1)

‘COMPAR(I , 4) ,NNODES(I ) ,NCROSS(I)
IF (COMPAR(1,2) .EQ. 10.0) PRINT 1985,COMPAR(I,1) 

‘COMPAR( I ,4 ) ,NNODES(I ) , NCROSS(I )
IF (COMPAR(1,2) .EQ. 20.0) PRINT 1986,COMPAR(I,1) 

*COMPAR( 1,4) ,NNODES (I ) , NCROSS(I )
1540 CONTINUE

CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
PRINT 1996,TOTTIM 
END IF 
STOP 

1550 PRINT 1990 
STOP

FORMAT STATEMENTS 

1900 FORMAT (2 (13 ,IX),1 4 ,IX ,I I , IX,1 5 ,IX,12)

, COMPAR(1,3) 

,COMPAR(I,3) 

, COMPAR(1,3) 

, COMPAR(1,3) 

, COMPAR(1,3) 

,COMPAR(I,3)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

368

1901 FORMAT (3(12,25(IX ,1 2 )/) ,1 2 ,2 1 (IX,1 2 ) ,IX ,I I ,2 ( IX ,12))
1902 FORMAT (F I.0 ,4 (1X,F8.2))
1910 FORMAT (1H1)
1915 FORMAT (IX ,‘THE RESULTS FOR NETWORK NUMBER ' , 1 3 , '  OF ',1 3 ,

&' NETWORKS GENERATED ARE:' / / )
1920 FORMAT (IX,'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION’, 

S' THROUGH THE PROJECT I S : ’ / / )
1925 FORMAT (IX,'THE SIMULATED TIME DISTRIBUTION',

&' THROUGH THE PROJECT IS : ' / / )
1930 FORMAT ( IX, ' INTERVAL',  13,4X, 'LOWER LIMIT » ',F 8 .2 ,3X ,

&'UPPER LIMIT = ',F 8 .2  / / )
1940 FORMAT (15X,'X = ( ' ,F 1 2 .8 , ')  + ( ' ,F 1 2 .8 , ')  T' / / )
1950 FORMAT (14X,'CUMULATIVE DISTRIBUTION FUNCTION’ / /

&21X,'T', 13X ,'F(T )')
1960 FORMAT (16X,F9.3,F17.8)
1970 FORMAT ( 12X,'EXPECTED VALUE OF T = ',F 1 3 .8  /

&12X,'STANDARD DEVIATION OF T = ',F13 .8  / / )
1980 FORMAT (IX,'THE PROBABILITY OF THE PROJECT THROUGHPUT TIME',

&' FALLING BETWEEN' /  1X,F8.3,' TIME UNITS AND ',F 8 .3 ,
&’ TIME UNITS IS ABOUT ' , F5.2 , '% . '/ / )

1981 FORMAT ( IX,F6.4 ,6X,' <1%',14X ,F6.2 ,'% ',9 X ,F 6 .2 ,'% ',7X ,I3,6X ,I3)
1982 FORMAT ( IX,F6.4 ,6X,' 1% -  2% ' , 12X,F6.2 , '% ',9X,F6.2 , '% ',7X,13 ,6X, 

&I3)
1983 FORMAT ( 1X,F6.4 ,6X,' 2% -  5% ',12X,F6.2 , '% ',9X,F6.2 , '% ',7X,1 3 ,6X, 

&I3)
1984 FORMAT ( IX ,F6.4 ,6X,' 5% -  10%',11X ,F6.2,'% ',9X,F6.2 , '% ',7X,I3,6X, 

&I3)
1985 FORMAT ( 1X,F6.4,6X ,'10% -  20%',11X,F6.2 , '% ',9X,F6.2 , '% ',7X,13 ,6X, 

&I3)
1986 FORMAT ( 1X,F6.4,6X,' >20%',13X,F6.2 , '% ',9X,F6.2 , '% ',7X,13,6X,13)
1990 FORMAT (IX,'PROGRAM STOPPED' /  IX ,' IMPROPER NODE NUMBER(S) '

&,'ENCOUNTERED')
1991 FORMAT ( IX, 'KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST COMPARISON OF ' ,

&'POLYGONAL APPROXIMATION' /  IX,'OF NETWORK THROUGHPUT DISTRIBUTION 
& AND SIMULATED NETWORK THROUGHPUT' /  IX,'DISTRIBUTION: ’ I I  
SIX,'K-S TEST STATISTIC D-MAX = ' ,  F6.4 / )

1992 FORMAT (IX,'K-S CRITICAL VALUES:' /  15X,'20 PERCENT = ',F 6 .4  /  
&15X,'10 PERCENT = ',F 6 .4  /  16X,'5 PERCENT = ',F 6 .4  /
&16X,'2 PERCENT * ',F 6 .4  / 16X,'1 PERCENT = ',F 6 .4  I )

1993 FORMAT (IX, 'FAIL TO REJECT THE NULL HYPOTHESIS THAT THE ' ,
S ' DISTRIBUTIONS ARE THE SAME' /  IX,'AT THE 5% LEVEL OF ' ,
St' STATISTICAL SIGNIFICANCE. ' )

1994 FORMAT ( IX, ' STATISTICAL COMPARISONS FOR THE ' , 1 3 , '  NETWORKS ' ,
&' GENERATED' /  IX, 'WITH ',1 3 , '  NODES AND ',1 4 , '  ACTIVITIES ARE:' / /  
&)

1995 FORMAT (1OX,'PROBABILITY VALUE' ,3X,'RELATIVE ERROR' , 2X,'RELATIVE ' 
S, 'ERROR',2X,'TOTAL',2X, 'NO. CROSS' /  2X, ' D-MAX' , 2X, ' (TYPE 1 ',
6 ’ ERROR PROB)' ,5X,'OF MEAN',8X,'OF STN DEV', 4X,'NODES' ,2X,
&'-CONNECTS' /)

1996 FORMAT ( / /  IX, 'CPU TIME FOR PART PROCESSING IS ',F 8 .3 , ' SECONDS’ 
&/ / )
END

C END MAIN PROGRAM
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
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S U B R O U T I N E P A R A

SUBROUTINE PARA (L1,L2,L3)
REAL*8 VALUE(2 0 0 ,9 9 ,1 0 ,3 ),XINT(200,99,12)
REAL*8 XVAL,ZVAL(130,5),PAR(2 ,1 5 ,6 ) ,FACT,B(130)
REAL*4 Z
INTEGER L l, L2, L3, NV1, NV2 
INTEGER K4(2,30)
INTEGER I , IINT,N, NCL, J,K , K3, L6, LASTJ,LASTK 
COMMON /  PARAl /XINT, VALUE 
COMMON/PARA2 /  ZVAL 
COMMON/ PARA3 /B

SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE 
EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP 
F (X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.

NVl = 10 
NV2 = 10 
DO 2020 N = 1,2 
L6 = L2
IF (N .EQ. 2) L6 = L3 
FACT = 0
DO 2010 J  = 1,10 
B(1) = XINT(Ll,L6, J)

DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X) 
INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS 
CUMULATIVE DISTRIBUTION CAP F(X).

DO 2000 I = 1,2
XVAL = VALUE(L l, L 6 ,J, I )
Z = FLOAT(I )
PAR(N,J,1+1) = XVAL/Z
PAR(N,J,1) = PAR(N,J,l)+((-1 .0 )* (XVAL/Z)*(B(1)**I))
K4(N,J) = 1+1 

2000 CONTINUE
IF (J  .GT. 1) PAR(N,J,1) = PAR(N,J,1)+FACT
FACT = PAR(N,J,1)+(PAR(N,J,2 )*XINT(L1,L6,J+l) ) +(PAR(N,J,3)

S*(XINT(L1,L6,J+l)**2))
2010 CONTINUE 
2020 CONTINUE

DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.

DO 2040 I = 1,22
IF (I  .GT. 11) GO TO 2030
B( I ) = XINT(L l,L2, I )
GO TO 2040 

2030 B( I ) = XINT(L1,L3,1-11)
2040 CONTINUE 

NCL = 21 
CALL SORT(NCL)

C
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C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER-
C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
C

IINT = 0
LASTJ = NCL+1
DO 2080 J  = 1 ,LASTJ
IF ( (XINT(L1,L2,1) .GE. XINT(Ll,L3,1)-0 .001) .AND.

&(XINT(L1,L2,1) .LE. XINT(L1,L3,1)+0.001)) GO TO 2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(L l,L2,1) .LE. XINT(Ll,L3,1)+0 .001) GO TO 2050 
IF (XINT(L1,L3,J+l) .GE. XINT(Ll,L2,1)-0 .001) IINT = J  
IF ( (XINT(L1,L3,J+1) .LE. 0.001)

& .OR. ( (XINT(L1,L2,1) .GE. XINT(Ll,L3, J + l)-0.001)
&.AND. (XINT(L l , L2,1) .LE. XINT(Ll,L3, J + l)+0.001)
&.AND. (XINT(L l, L3, J+2) .LE. 0 .001))) GO TO 2180 
GO TO 2080

2050 IF (XINT(L1,L2,J+l) .GE. XINT(Ll,L3,1)-0.001) IINT = J  
IF ( (XINT(L1,L2,J+1) .LE. 0.001)

&.OR. ( (XINT(L1,L3,1) .GE. XINT(Ll,L2, J + l)-0.001)
&.AND. (XINT(L1,L3,1) .LE. XINT(Ll,L2, J + l )+0.001)
&.AND. (XINT(L1,L2,J+2) .LE. 0 .001))) GO TO 2160 
GO TO 2080 

2060 LASTK = NCL-(IINT-l)
DO 2070 K = 1 ,LASTK 
B(K) = B(K+IINT)
B(K+IINT) = 0 

2070 CONTINUE
GO TO 2090 

2080 CONTINUE 
2090 NCL » NCL-IINT

DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE 
EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED 
BETWEEN THE TWO ARCS.

Nl = 0 
N2 * 0
DO 2150 I = 1 ,NCL 
DO 2110 J  = 1,11

DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION 
THAT ARE VALID FOR THE B(I) VALUE BEING CONSIDERED. Nl AND 
N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.

IF (Nl .GE. 1) GO TO 2100
IF ( ( ( B( I ) .GE. XINT(L1,L2, J ) -0.001) .AND. (B(I+1)

S.LE. XINT(Ll,L2,J+ l)+0.001)) .OR. (XINT(L1,L2,J+l) .LE. 0.001))
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&N1 = J  
2100 CONTINUE

IF (N2 .GE. 1) GO TO 2110
IF ( ( (B(I) .GE. XINT(L1,L3,J)-0.001) .AND. (B(I+1)

S.LE. XINT(L l, L3, J + l)+0.001)) .OR. (XINT(L1,L3,J+l) .LE. 0.001)) 
6N2 =* J 

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) = 1
IF (Nl .GT. NVl) K4(1,N1) = 1

C
C DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR
C CAP F(X) AND CAP G(X).
C

LASTJ = K4(2,N2)
LASTK = K4(1,N1)
DO 2130 J  = 1 ,LASTJ 
DO 2120 K = 1 ,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) = 1
IF (Nl .GT. NVl) PAR(1 ,Nl,K) = 1
K3 = J+K-l
ZVAL(I,K3) = ZVAL(I,K3) + (PAR(1,Nl ,K)*PAR(2,N2, J ) )

2120 CONTINUE 
2130 CONTINUE

C
C DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE
C MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A
C LITTLE H(X) FOR THAT PRODUCT.
C

DO 2140 J  = 1,4
Z V A L ( I , J ) =  Z V A L ( I , J + l ) * F L O A T ( J )
ZVAL(I,J+l) = 0 

2140 CONTINUE 
Nl = 0 
N2 = 0 

2150 CONTINUE
C
C LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE RESULTS OF THE
C PARALLEL REDUCTION WITH THE B(O) AND B (l) FORM IN EACH OF 10
C CLASSES.
C

VALUE(L1,L2,1,3) = 99.
CALL LINEAR(L1,L2,NCL)
GO TO 2180 

2160 DO 2170 I  = 1,10
VALUE(L l, L2,1 ,1 ) = VALUE(Ll,L3,1,1)
VALUE(L l, L2, 1,2) = VALUE(Ll,L3,1,2 )
XINT(L l, L2, I ) = XINT(L1,L3,I)

2170 CONTINUE
XINT(L1, L2,11) = XINT(Ll,L3,11)

2180 VALUE(L1,L2,1,3) = 0 
DO 2210 I  = 1,2 
DO 2200 J  = 1,10 
DO 2190 K = 1,3 
PAR(I, J,K) = 0 

2190 CONTINUE 
2200 CONTINUE
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2210 CONTINUE 
RETURN 
END
END SUBROUTINE PARA

S U B R O U T I N E S E R I E S

SUBROUTINE SERIES (Ll,L2,L3,L4)
REAL*8 VALUE(200 ,99 ,10 ,3),XINT(200,99,12)
REAL*8 ZVAL(130,5),XLIM(2) , A(130)
REAL*8 F0, F I , GO, G1, XL 
INTEGER Ll,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCL1,NE 
COMMON /PARAl /XINT, VALUE 
COMMON/ PARA2/ZVAL 
COMMON/PARA3/A

SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY 
DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE 
POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X) •

THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE 
CONVOLUTION.

THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA. 

K  =  0

DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION 
BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.

.LE. 0 ) .AND. (I .GT. 1)) GO TO 3020

.LE. 0 ) .AND. (J .GT. D ) NCL1 == J-2

.LE. 0 ) .AND. (J • GT. 1)) GO TO 3010

J )+XINT(L3,L4 *1)

DO 3010 I  = 1,12 
IF ( (XINT(L3,L4,I) 
DO 3000 J  = 1,12 
IF  ( (XINT(L1,L2,J) 
IF ( (XINT(L1,L2,J) 
K = K+l

3000 CONTINUE 
3010 CONTINUE 
3020 NINT = 1-2 

NCL = K-l

DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X) 
DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES 
CREATED BY COMBINING F(X) AND G(T-X). DO 3100 IS CONTROLLED 
BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS 
ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY 
CLASS IN BOTH DISTRIBUTIONS.

CALL SORT(NCL)
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DO 3120 K = 1 ,NCLl
DO 3110 I  = 1 ,NCL
DO 3100 J  = 1 ,NINT

p
IK = 0

C THIS IF STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE
c INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K
c
p

BEING CONTROLLED BY DO 3120.

IF ((A (I) .GE. XINT(L l, L2,K)+XINT(L3, L4, J )-0.001) .AND. (A(I+1)
&.LE. XINT(L l, L2,K+l) +XINT(L3, L4, J + l) +0.001)) IK = J
IF (IK .GE. 1) GO TO 3030
GO TO 3100

3030 ISEL(l) = 0

c
ISEL(2) = 0

c THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE
c UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER
c THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL
c
p

IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.

IF (XINT(L1,L2,K) .GE. (A(1+1)-XINT(L3,L4, J + l )-0 .001)) GO TO 3040
XLIM(l) = XINT(L3,L4,J+l)
ISEL(l) = 999
GO TO 3050

3040 XLIM(l) = XINT(L1,L2,K)
3050 IP (XINT(L1,L2,K+1) .LE. (A(I)-XINT(L3,L4,J)+0.001)) GO TO 3060 

XLIH(2) = XINT(L3,L4,J)
ISEL(2) = 999 
GO TO 3070 

3060 XLIH(2) = XINT(L1,L2,K+1)
3070 CONTINUE

DO 3090 NE = 1,2 
F0 = VALUE(L1,L2,K,1)
FI = VALUE(Ll,L2,K,2)
GO = VALUE(L3, L4, IK,1)
G1 = VALUE(L3, L4, IK,2)
XL = XLIM(NE)
Z -  1.0
IF (NE .EQ. 1) Z = -1 .0  
IF (ISEL(NE) .EQ. 999) GO TO 3080

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE
C LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS
C BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE
C SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT
C IS BEING EVALUATED.
C

ZVAL(1,1) = ZVAL(1,1) + ( (F0*G0*XL)+( (F1*G0*XL**2) /2 .)
& +((-1.0*F1*G1*XL**3)/3.)+ ((-1 .0*F0*G1*XL**2)/2.))*Z 

ZVAL(I,2) = ZVAL(I,2)+(((Fl*Gl*XL**2)/2.)+(F0*Gl*XL))*Z 
ZVAL(1,3) = ZVAL(I,3 )+ ((-1 .0*F0*G1) / 2 . ) *Z 
GO TO 3090

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL FOR LIMITS.
C IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE
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INVOLVES LIMITS IN THE FORM OF (T-X) .

3080 ZVAL(1 ,1 ) = ZVAL(I,l)+(( -1 .0*FO*G0*XL)+((F1*G0*XL**2)/2 .) 
&+((Fl*Gl*XL**3)/3.)+((-1.0*F0*Gl*XL**2)/2.) )*Z 

ZVAL(1 ,2 ) = ZVAL(I,2)+((-1 .0*Fl*GO*XL)+(FO*GO)- 
&((Fl*Gl*XL**2)/2.) )*Z 

ZVAL(1 ,3 ) = ZVAL(I,3)+ ((F1*G0)/2.) *Z 
ZVAL(1 ,4 ) = ZVAL(I,4)+((Fl*Gl)/6.)*Z 

3090 CONTINUE 
3100 CONTINUE 
3110 CONTINUE 
3120 CONTINUE

LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE CONVOLUTION 
RESULTS WITH THE B(0) AND B(l) FORM IN EACH OF 10 CLASSES.

VALUE(L l ,L2,1 ,3 ) = 99.
CALL LINEAR(L1,L2,NCL)
RETURN
END
END SUBROUTINE SERIES

S U B R O U T I N E P L O T

SUBROUTINE PLOT ( IPRINT,KBL,KBM, IFLAG)
R E A L * 8 XX(1 0 0 ,2 ),S O R T  
C H A R A C T E R *  1 K B L , K B M ,L I N E (  101)
INTEGER I ,  IFLAG, IPRINT, J,JPLOT,K,NN 
COMMON/PARA4/XX

PLOT IS USED TO CREATE THE HISTOGRAM FOR FINAL OUTPUT. 
THE VARIABLE SORT IN THIS SUBROUTINE IS NOT RELATED TO 
THE SUBROUTINE SORT.

SORT = XX(1,2)
DO 4000 I  = 2 ,IPRINT
IF (SORT .LE. XX(I,2) ) SORT = XX(I,2)

4000 CONTINUE
PRINT 4900
IF (IFLAG .EQ. 0) THEN
PRINT 4910
ELSE
PRINT 4915 
END IF
IF (SORT .GT. 0.5) PRINT 4920
IF ((SORT .GT. 0 .25 ).AND.(SORT .LE. 0 .50)) PRINT 4930
IF ((SORT .GT. 0 .1 0 ).AND.(SORT .LE. 0 .25)) PRINT 4940
IF ((SORT .GT. 0.05) .AND. (SORT .LE. 0 .10)) PRINT 4950
IF (SORT .LE. 0.05) PRINT 4960
PRINT 4970
DO 4030 I = 1 ,IPRINT
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DO 4010 J  = 1,51 
LINE(J) -  KBL 

4010 CONTINUE
IF (SORT .GT. 0.5) JPLOT = ( INT((XX(I,2 )* 5 0 .)+ 0 .5 ))+l 
IF ((SORT .GT. 0 .2 5 ) .AND.(SORT .LE. 0 .50))

&JPLOT = (INT((XX(I,2)*100.)+0.5))+l 
IF ((SORT .GT. 0 .1 0 ) .AND.(SORT .LE. 0 .25))

&JPLOT = (INT((XX(I,2)*200.)+0.5 ) )+l 
IF ((SORT .GT. 0 .0 5 ) .AND.(SORT .LE. 0 .10))

&JPLOT = ( INT((XX(I,2)*500.)+0.5 ) )+l 
IF (SORT .LE. 0.05) JPLOT » ( INT((XX(I,2)*1000 .0)+ 0 .5))+l 
IF (JPLOT .LE. 0) JPLOT = 1 
IF (JPLOT .GT. 51) JPLOT = 51 
DO 4020 NN -  1 ,JPLOT 
LINE(NN) -  KBM 

4020 CONTINUE
PRINT 4980,XX(I,1),(LINE(K), K = 1 ,JPLOT)

4030 CONTINUE
C
C FORMAT STATEMENTS
C

4900 FORMAT (1H1)
4910 FORMAT ( 15X,’PROBABILITY DENSITY FUNCTION’ / / )
4915 FORMAT ( 15X, ’SIMULATION FREQUENCY HISTOGRAM' / / )
4920 FORMAT (9X ,'0 .20 .40 .60 .80 1 .0 ’ )
4930 FORMAT (9X ,'0 .10 .20 .30 .40 .5 0 ')
4940 FORMAT (9X ,'0 .05 .10 .15 .20 .2 5 ’ )
4950 FORMAT (9X ,'0 .02 .04 .06 .08 .1 0 ')
4960 FORMAT (9X ,'0 .01 .02 .03 .04 .0 5 ')
4970 FORMAT ( 9X, ' I  +------1----- +------1------+------ 1------+------1------+------ 1 ')
4980 FORMAT ( 1X,F8.3,2X,51A1)

R E T U R N
END

C END SUBROUTINE PLOT
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C S U B R O U T I N E  L I N E A R
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
SUBROUTINE LINEAR (L1,L2,NCL)
R E A L * 8  V A L U E (200,99,10,3) , X I N T ( 2 0 0 ,9 9 ,1 2 ),Z V A L (130 ,5 ),A ( 130)
R E A L * 8  Q,Q1,Q2,STD,SUMX,SUMY,SUMXY,SUMSQ
R E A L * 8  A L P H A ,A R E A ,B E T A ,F A C T ,S I Z E ,W ,X ,X L M B D A ,X M E A N
R E A L * 8  X M O D E , X S I Z E ,  Y
INTEGER Ll,L2
C O M M O N /P A R A l /X I N T , V A L U E
COMMON/ PARA2/ ZVAL
C O M M O N/PARA3/A
E X T E R N A L  DGAMMA

C
C SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA
C FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH
C THE B(O) AND B (l) FORM IN EACH OF 10 CLASSES THROUGH THE USE
C OF SIMPLE LINEAR REGRESSION.
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XMODE = VALUE(L l ,L2,2,3)
XMEAN = VALUE(L1 ,L2,2,3)
STD = ( (VALUE(L1,L2,2,3)-XINT(L1,L2,1) ) / 3 . )
XLMBDA = VALUE(L1,L2,2,3)-XINT(L1,L2,1)
ALPHA = VALUE(L1,L2,2,3)
BETA = VALUE (L l, L2,3 ,3)
SIZE = (XINT(Ll,L2,2)-XINT(Ll,L2,l))/10.
IF (IDINT(VALUE(L1,L2,1,3)) .EQ. 99) SIZE = (A(NCL+1)-A(1 ) ) /1 0 . 
XINT(LlfL 2 ,ll)  = XINT(L1,L2,2)
IF ( IDINT(VALUE(Ll,L2,l,3)) .EQ. 99) XINT(Ll,L2,11) =A(NCL+1)
X = XINT(L1,L2,1)
IF (IDINT(VALUE(L1,L2,1,3)) .EQ. 99) X = A(l)
DO 5000 I = 1,10 
XINT(Ll,L2,I) ~ X 
X = X+SIZE 

5000 CONTINUE
DO 5050 I = 1,10 
X = XINT(L l, L2, I )
SUMY = 0.
SUMX = 0.
SUMXY = 0.
SUMSQ = 0.

W CONTROLS THE NUMBER OF DATA POINTS USED IN THE REGRESSION 
COMPUTATIONS.

W = 10.+IDINT(SIZE*3.)
XSIZE = SIZE/W 
LASTJ = IDINT(W)
DO 5040 J  * 1 ,LASTJ
IF ( IDINT(VALUE (Ll,L2,1 , 3)) .NE. 99) GO TO 5030 
DO 5010 K3 = 1 ,NCL 
K = 0
IF ((X .GE. A(K3)) .AND. (X .LE. A(K3+1))) K = K3 
IF (K .GE. 1) GO TO 5020 

5010 CONTINUE

SERIES OR PARA GENERATED DISTRIBUTIONS.

5020 Y * ZVAL(K, 1) + ( ZVAL(K, 2) *X) + (ZVAL(K, 3) * (X**2) ) 
fi+( ZVAL(K,4)*(X**3))

5030 CONTINUE

TRIANGULAR DISTRIBUTION.

IF ( IDINT(VALUE(L1,L2,1,3)) .EQ. 1) THEN
IF (XINT(L l, L2,1) .LE. X .AND. X .LE. XMODE) THEN
Y = (2 .* (X-XINT(Ll,L2, 1 ) ) ) / ( ( XMODE-XINT(Ll,L2,1))*10.*SIZE) 
ELSE
Y = (2 .* (XINT(L1,L2,11)-X)) / ( (XINT(Ll,L2,11)-XMODE)*10.*SIZE) 
END IF

NORMAL DISTRIBUTION.

ELSE IF (IDINT (VALUE (Ll ,L2,1 ,3 ))  .EQ. 2) THEN
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Y = ( 1 . / ( STD*2.506628275))*(DEXP(( -1 .0 )* ( ( (X-XMEAN)/STD)* * 2 ) / 2 . ) )  

EXPONENTIAL DISTRIBUTION (SHIFTED).

ELSE IF ( IDINT(VALUE(Ll ,L2,1 ,3 )) .EQ. 3) THEN
Y = (1 . /XLMBDA) * (DEXP( (-1 .0) * ((X-XINT(Ll,L2 , 1) ) /XLMBDA) ) )

GAMMA DISTRIBUTION.

ELSE IF ( IDINT(VALUE(Ll,L2,1 ,3 )) .EQ. 4) THEN
Y = (1 . /  (DGAMMA( ALPHA) * (BETA*‘ALPHA) ) ) *DEXP(-X/BETA) * (X* * (ALPHA-1. 

& ) )

BETA DISTRIBUTION.

ELSE IF ( IDINT(VALUE(Ll,L2,1 ,3 )) .EQ. 5) THEN
Y = (DGAMMA (ALPHA+BETA)/(DGAMMA( ALPHA) *DGAMMA( BETA) ) )*

& (1 ./(1 0 .‘ SIZE)* *(ALPHA+BETA-2 .))*
&((X-XINT(L1,L2,1))“  (ALPHA-1.))*
&((XINT(L1,L2,11)-X)**(BETA-1.))
END IF
IF (Y .LT. 0) Y = 0 
SUMX = SUMX+X 
SUMY = SUMY+Y 
SUMXY = SUMXY+(X*Y)
SUMSQ = SUMSQ+(X“ 2)
X = X+XSIZE 

5040 CONTINUE
VALUE(L l, L2,1 ,2 )  = (SUMXY-((SUMX‘ SUMY)/W))/(SUMSQ-((SUMX**2)/W)) 
VALUE(L l, L2,1 ,1 ) = (SUMY/W)- (VALUE(Ll,L2, 1, 2 )* (SUMX/W))

5050 CONTINUE

DO 5060 CALCULATES THE AREA UNDER THE APPROXIMATED DISTRIBUTION.
AN ADJUSTMENT FACTOR FOR THE AMOUNT THAT THIS AREA HAS BEEN 
UNDERESTIMATED OR OVERESTIMATED IS THEREBY DETERMINED.

DO 5060 I = 1,10
Q = XINT(L l, L2,1+1)-XINT(L1,L2,I)
Q1 = (XINT(Ll,L2, 1) ‘VALUE(Ll,L2 ,1 ,2 ) ) +VALUE (L l,L 2,1 ,1 )
Q2 = (XINT(Ll,L2,1+1)‘VALUE(L l,L2,1 ,2 ) )+VALUE(Ll,L2 ,1 ,1 )
IF (Q1 .LT. 0 .)  VALUE(L1,L2,I,1) = VALUE(Ll,L2, I , 1)+ (Q1*(-1 .0 ))
IF (Q2 .LT. 0 .)  VALUE(Ll,L2,1 ,1 ) = VALUE(Ll,L2, I , 1)+ (Q2*(-1 .0 ))
IF (Q1 .LT. 0 .)  Q1 = 0.
IF (Q2 .LT. 0 .)  Q2 = 0.
AREA = AREA+((Q1+Q2)*Q*0.5)

5060 CONTINUE
FACT = 1 .0 /AREA

DO 5070 ADJUSTS THE COEFFICIENTS OF ALL THE LINEAR POLYNOMIAL 
PIECES BY THE FACTOR COMPUTED IN DO 5060 IN ORDER TO NORMALIZE 
THE AREA BACK TO ONE. THIS ACTS TO REDUCE ACCUMULATING ERRORS 
DURING PROGRAM COMPUTATIONS.

DO 5070 I = 1,10
VALUE(L l, L2,1 ,1 ) = VALUE(Ll,L2, 1 ,1 ) ‘FACT 
VALUE(L l, L2, I ,2) = VALUE(L1,L2,I,2)*FACT
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5070 CONTINUE 
AREA = 0
DO 5080 I  = 1,130 
A( I ) -  0 
ZVAL(1,1) = 0 
ZVAL(1,2) = 0 
ZVAL(I,3) = 0 
ZVAL(1,4) = 0 

5080 CONTINUE 
RETURN 
END
END SUBROUTINE LINEAR

S U B R O U T I N E S O R T

C
c
c
c

SUBROUTINE SORT (NCL)
REAL*8 A(130),B 
INTEGER NCL 
INTEGER I,K1 
COMMON/PARA3/A

SUBROUTINE SORT IS USED TO CONDUCT AN ALGEBRAIC SORT OF DATA 
CREATED IN THE SERIES AND PARA SUBROUTINES.

6000 K1 = 0
DO 6010 I = 1 ,NCL
IF ((A (I) .LT. (A(I+1)+.01)).AND.(A(I) 

6 GO TO 6020 
IF (A (I) .LT. A(1+1)) GO TO 6010 
IF (A (I) .GT. A(1+1)) B  = A (I)
A ( I ) =  A ( 1 + 1 )
A(I+1) = B  
K1=K1+1 

6010 CONTINUE
IF (K1 .GE. 1) GO TO 6000 
GO TO 6040 

6020 NCL = NCL—1
LASTJ = NCL+1 
DO 6030 J  = I,LASTJ 
A(J) = A (J+ l)
A (J+l) = 0 

6030 CONTINUE
GO T O  6000 

6040 R E T U R N  
E N D
E N D  S U B R O U T IN E  S O R T

•GT. (A(1+1) - .0 1 ) ))

S U B R O U T I N E S I M U L T
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c
SUBROUTINE SIMULT (N,NSIH)
REAL*8 XINT(200 ,99 ,12),VALUE(200,99,10,3)
REAL*8 T(100,9 9 ),SIMT(100,10000)
REAL*8 ALPHA,BETA, X, XLNGTH, XLMBDA,XMAX, XMEAN,XMIN, XMODE 
REAL*8 RN, STD, TTEMP, TMAX 
DIMENSION NET(200,103)
INTEGER ISIM,N,NDIST,NSIM 
COMMON/PARA1 /XINT, VALUE 
COMMON/PARA5/NET 
COMMON/PARA6/SIMT
EXTERNAL DRNUN, DRNNOR, DRNEXP,DRNGAM,DRNBET,RNSET

C
C DO 7130 GENERATES A SIMULATED NETWORK THROUGHPUT FOR EACH OF
C NSIM ITERATIONS OF THE MONTE CARLO SIMULATION OF THE NETWORK.
C

DO 7130 ISIM=1,NSIM
C
C DO 7080 GENERATES A RANDOM VALUE FROM THE ACTIVITY RESOURCE
C CONSUMPTION (ACTIVITY TIME) DISTRIBUTION OF EACH ACTIVITY.
C

DO 7080 1=1,N-l 
DO 7070 J=1,NET(1,103)
NDIST = IDINT(VALUE(I,J,1,3) )
XMIN = XINT( I , J , 1)
XMAX = XINT(I,J,11)
XLNGTH = XMAX-XMIN
GO TO (7010,7020,7030,7040,7050,7060) NDIST

C
C TRIANGULAR DISTRIBUTION.
C

7010 CALL DRNUN(1 ,RN)
XMODE = VALUE(I,J,2,3)
X = (XMODE-XMIN)/XLNGTH 
IF (RN .GT. X) GO TO 7015
T( I , J) = XMIN+DSQRT(RN*XLNGTH* (XMODE-XMIN))
GO TO 7070

7015 T( I ,  J) = XMAX-DSQRT (XLNGTH *( XMAX-XMODE) *( l.-RN) )
GO TO 7070

C
C NORMAL DISTRIBUTION.
C

7020 CALL DRNNOR(1,RN)
XMEAN = VALUE(I , J , 2,3)
STD = (XMEAN—XMIN) / 3 .
T ( I ,J )  = (RN * STD)+XMEAN
IF ( (T( I ,  J) .LT. XMIN) .OR. (T (I,J )  .GT. XMAX)) GO TO 7020 
GO TO 7070

C
C EXPONENTIAL DISTRIBUTION.
C

7030 CALL DRNEXP( 1,RN)
XLMBDA = VALUE(I , J , 2 ,3 )-XMIN 
T (I ,J )  = (XLMBDA*RN)+XMIN 
IF (T (I ,J )  .GT. XMAX) GO TO 7030 
GO TO 7070
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GAMMA D I S T R I B U T I O N .

7040 ALPHA = VALUE(I , J , 2,3)
BETA = VALUE(I,J,3,3)
CALL DRNGAM(1 ,ALPHA,RN)
T (I ,J )  = BETA*RN
IF (T (I ,J )  .GT. XMAX) GO TO 7040
GO TO 7070

B E T A  D I S T R I B U T I O N .

7050 A L P H A  =  V A L U E ( I , J , 2,3)
BETA = VALUE(I,J,3,3)
C A L L  D R N B E T (1 ,A L P H A ,B E T A ,R N )
T ( I , J ) =  X M I N + (X L N G T H * R N )
GO TO 7070

UNIFORM DISTRIBUTION.

7060 C A L L  D R N U N ( 1 , R N )
T ( I , J )  =  X M I N + (X L N G T H * R N )

7070 CONTINUE 
7080 CONTINUE

DO 7120 GENERATES THE CRITICAL PATH TO EACH NODE. THE 
SIMULATED TIME THROUGH NODE I FROM SIMULATION ITERATION L 
IS STORED IN SIMT(I,L).

SIMT(1 ,ISIM) = 0 . 0  
DO 7120 1=2,N 
TMAX = 0 . 0

DO 7110 DETERMINES THE STARTING NODES AND THE ACTIVITIES WHICH 
TERMINATE AT NODE I  > STARTING NODES, AND COMPUTES THE SIMULATED 
THROUGHPUT VALUE THROUGH NODE I AS THE MAXIMUM OF THE 

[ ( THROUGHPUT VALUE THROUGH STARTING NODE) +
(ACTIVITY VALUE FROM STARTING NODE TO NODE I ) ] .

DO 7110 J= 1 ,I-1  
DO 7100 Jl=2,N ET(J,103)+l 
IF (N ET(J,Jl) - I ) 7100,7090,7100 

7090 TTEMP = SIM T(J,ISIM )+T(J,Jl-1)
IF (TTEMP .LT. TMAX) GO TO 7100 
TMAX = TTEMP 

7100 CONTINUE 
7110 CONTINUE

SIMT(I, ISIM) = TMAX 
7120 CONTINUE 
7130 CONTINUE 

RETURN 
E N D

END SUBROUTINE SIMULT
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S U B R O U T I N E  G E N R A N

SUBROUTINE GENRAN (N,NACTS)
DIMENSION NET(200,103),NAF(99),NBE(99)
REAL*4 DEN,DL,DN,DN2,DN3,UP,X,Y,Y1
INTEGER I , I J ,  J,K,KK,L, N,NI,NO,NN, NACTS,NARCS,NDEL, NDIFF, NFREE,NEM, 

& NRC
COMMON/ PARA5/NET 
EXTERNAL RNUN

THIS SUBROUTINE GENERATES A RANDOM ACYCLIC, DIRECTED ACTIVITY 
NETWORK WITH N NODES AND NACTS ACTIVITIES WITH THE METHOD OF 
DEMEULEMEESTER, DODIN AND HERROELEN (1993).

8000 DO 8010 I  = 1,200 
DO 8005 J  = 1,103 
NET(I,J) = 0 

8005 CONTINUE
NET(1,101) = 1 

8010 CONTINUE

COMPUTE NUMBER OF ACTIVITIES TO DELETE WITH THE DELETION METHOD.

L = N*(N-l)/2 
NDEL = L-NACTS

C O M P U T E  N D I F F  S U C H  T H A T
INITIAL NUMBER OF FREE ACTIVITIES = NACTS -  NDIFF 

FOR THE ADDITION METHOD.

NDIFF = ( 2*N)-4 
DN = REAL(N)
DL = (REAL(L)/2.0)+1.0 
DN2 = DN*(DN—1.0)
DN3 = DN+0.5

IF [N(N-1) /4 ]+l < OR = NACTS, CHOOSE THE DELETION METHOD.
IF [N (N -l)/4]+ l > NACTS, CHOOSE THE ADDITION METHOD.

IF (DL-NACTS) 8020,8020,8110

T H E  D E L E T I O N  M E T H O D .

8020 DO 8040 I  = 1,N-1 
NET(I,1) = I 
DO 8030 J  = I+1,N 
NET(I, J) = J  

8030 CONTINUE
NET(I,102) = 1-1 
NET(I,103) = N—I 

8040 CONTINUE
NET(N,1) = N 
NET(N,102) = N-l
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C D O  8100 DELETES NDEL R A N D O M L Y  SELECTED ACTIVITIES.
C

8050 DO 8100 I  = 1 ,NDEL
C
C  C H E C K  T H A T  T H E R E  I S  A T  L E A S T  O N E  A C T I V I T Y  F E A S I B L E  F O R
C  A C T I V I T Y  D E L E T I O N .  I F  N O T ,  R E S T A R T  N E T W O R K  G E N E R A T I O N .
C

DO 8055 J  = 1,N—1 
NO = J
IF (NET(NO,103) .LT. 2) GO TO 8055 
DO 8054 K = NO+l,N
IF (NET(K,102) .GE. 2 .AND. NET(NO,K) .EQ. K) GO TO 8060

8054 CONTINUE
8055 C O N T IN U E  

G O  T O  8000
C
C RANDOMLY SELECT THE STARTING NODE (NO) OF THE ACTIVITY TO BE
C DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.
C

8060 CALL RNUN(1 ,Y)
Y1 = (Y*DN2)+0.25 
X = DN3-SQRT(Yl)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
IF (NET(NO,103) .LT. 2) GO TO 8060

C
C RANDOMLY SELECT THE ENDING NODE (NI) OF THE ACTIVITY TO BE
C DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.
C

K = 0
DO 8070 J  = NO+l,N 
IF (NET(J,102) .LT. 2) GO TO 8070 
IF (NET(NO,J) .EQ. 0) GO TO 8070 
K = K+l 
NAF(K) = J  

8070 CONTINUE
IF (K .EQ. 0) GO TO 8060 
DEN = 1.0/REAL(K)
CALL RNUN(1, X)
DO 8080 J  = 1 ,K 
U P  =  D E N * R E A L ( J )
IF (X .GT. UP) GO TO 8080 
NI = NAF(J)
GO TO 8090 

8080 CONTINUE
C
C DELETE THE ACTIVITY FROM NODE NO TO NODE N I.
C

8090 N E T ( N O , N I )  = 0
NET(NO,103) = NET(NO,103)-1 
NET(NI,102) = NET(NI,102) - l  

8100 CONTINUE
GO TO 8250

C
C  T H E  A D D I T I O N  M E T H O D .
C
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8110 DO 8120 I  = 1,N 
NET(1,1) = I 

8120 CONTINUE
C
C INITIALIZE NUMBER OF NONRECEIVING NODES (NRC) AND NUMBER OF
C NONEMITTING NODES (NEM).
C

NRC = N-3 
NEM = N-3

C
C ADD ACTIVITIES FROM NODE 1 TO NODE 2 AND FROM NODE N-l TO NODE N.
C

NET(1/2) = 2 
NET(N-1,N) = N 
NET(1,103) * 1 
NET(2,102) = 1 
NET(N—1,103) -  1 
NET(N,102) = 1

C
C INITIALIZE NUMBER OF ACTIVITIES ADDED SO FAR (NARCS).
C

NARCS = 2
C
C IF INITIAL NUMBER OF FREE ACTIVITIES
C [NACTS -  (2N-4) = NACTS -  NDIFF] IS < OR = 0,
C THEN ALL NACTS ACTIVITIES TO BE ADDED ARE SUBJECT TO FEASIBILITY
C CONDITIONS AND CANNOT BE RANDOMLY SELECTED.
C

IF (NDIFF .GE. NACTS) GO TO 8170
C
C SET FLAG (KK = 0) THAT INITIAL NUMBER OF FREE ACTIVITIES IS > 0.
C

KK = 0
C
C RANDOMLY SELECT THE START NODE (NO) OF THE ACTIVITY TO BE ADDED
C FROM AMONG THE FEASIBLE NODES.
C

8130 CALL RNUN(1 ,Y)
Y1 = (Y*DN2)+0.25 
X = DN3-SQRT(Y1)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NN = N-NO
IF (NET(NO,103) .GE. NN) GO TO 8130

C
C RANDOMLY SELECT THE END NODE (NI) OF THE ACTIVITY TO BE ADDED
C FROM AMONG THE FEASIBLE NODES.
C

K = 0
DO 8140 J  = NO+1,N 
IF (NET(NO,J) .NE. 0) GO TO 8140 
K = K+l 
NAF(K) = J  

8140 CONTINUE
DEN = 1.0/REAL(K)
CALL RNUN(1 ,X)
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U P  = 0.0 
DO 8150 J  = 1,K 
U P  =  U P + D E N
IF (X .GT. UP) GO TO 8150 
HI = NAF(J)
GO TO 8160 

8150 CONTINUE

ADD THE ACTIVITY FROM NODE NO TO NODE NI.

8160 NET(NO,NI) = NI 
NARCS = NARCS+1
IF (NET(NO,103) .EQ. 0) NEM * NEM-1
IF (NET(NI,102) .EQ. 0) NRC -  NRC-1
NET(NO,103) -  NET(NO,103)+1 
NET(NI,102) = NET(NI,102 )+l

IF
NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS > OR =
NUMBER OF ACTIVITIES REQUIRED (NACTS),

T H E N  T H E  N E T W O R K  I S  C O M P L E T E .

IF (NARCS .GE. NACTS) GO TO 8250

IF THE FLAG (KK) INDICATES THAT
NUMBER OF NONRECEIVING NODES (NRC) = 0, AND 
NUMBER OF NONEMITTING NODES (NEM) = 0 ,  I .E .

FEASIBILITY REQUIREMENTS ARE MET, THEN THE REMAINING ACTIVITIES 
TO BE ADDED ARE FREE ACTIVITIES AND ARE TO BE RANDOMLY SELECTED.

IF (KK .EQ. 1) GO TO 8130

IF
NUMBER OF FREE ACTIVITIES (NFREE) IS > 0,

THEN THE NEXT ACTIVITY TO BE ADDED IS A FREE ACTIVITY AND IS TO BE 
RANDOMLY SELECTED.

NFREE = NACTS-NARCS-NRC-NEM 
IF (NFREE .GT. 0) GO TO 8130

IF
NUMBER OF FREE ACTIVITIES (NFREE) = 0, AND 
NUMBER OF NONRECEIVING NODES (NRC) = 0,

T H E N  C H E C K  T H E  N U M B E R  O F  N O N E M IT T IN G  N O D E S  ( N E M ) .

8170 IF (NRC .EQ. 0) GO TO 8200

IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONRECEIVING 
NODES (NRC) TO 0.

K = 0
DO 8180 I = 3,N-1 
IF (NET(I,102) .GT. 0) GO TO 8180 
K = K+l 
NAF(K) = I 

8180 CONTINUE
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IF (K .EQ. 0) GO TO 8200 
DO 8190 I =1,K 
I J  = K+l-I 
NI * NAF(IJ)
CALL RNUN(1 r Y)
X = 1.0+(REAL(NI-1)*Y)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NET(NO,NI) =* NI 
NARCS =* NARCS+1 
NET(NO,103) = NET(NO,103)+l 
NET(NI,102) * NET(NI,102)+l 

8190 CONTINUE

IF
NUMBER OF NONEMITTING NODES (NEM) = 0,

THEN THE FEASIBILITY REQUIREMENTS ARE MET.

8200 IF (NEM .EQ. 0) GO TO 8230

IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONEMITTING 
NODES (NEM) TO 0.

K =  0
DO 8210 I = 2,N-2 
IF (NET(I,103) .GT. 0) GO TO 8210 
K = K+l 
NBE(K) = I 

8210 CONTINUE
IF (K .EQ. 0) GO TO 8230 
DO 8220 I  * 1,X 
NO = NBE(I)
CALL RNUN(1 ,X)
Y = REAL(NO+l)+(REAL(N-NO)*X)
NI = INT(Y)
IF (NI .GT. Y) NI = NI-1 
NET(NO,NI) = NI 
NARCS > NARCS+1 
NET(NO,103) = NET(NO,103)+l 
NET(NI,102) = NET(NI,102)+1 

8220 CONTINUE

SET FLAG (KK = 1) THAT FEASIBILITY REQUIREMENTS HAVE BEEN MET. 

8230 KK = 1

IF NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS
< NUMBER OF ACTIVITIES REQUIRED (NACTS), THEN RANDOMLY SELECT

THE NEXT ACTIVITY TO BE ADDED,
= NACTS, THEN THE NETWORK IS COMPLETE,
> NACTS, THEN USE THE DELETION METHOD TO DELETE EXCESS

ACTIVITIES.

IF (NARCS-NACTS) 8130,8250,8240 
8240 NDEL = NARCS-NACTS 

GO TO 8050
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RECONFIGURE NET ARRAY.

8250 DO 8270 I  = 1,N-1 
K = 2
DO 8260 J  = 1+1 ,N
IF (NET(I,J) .EQ. 0) GO TO 8260
NET(I,K) = NET(I,J)
IF (K .LT. J) NET(I,J) = 0 
K = K+l 

8260 CONTINUE 
8270 CONTINUE 

RETURN 
END
END SUBROUTINE GENRAN

S U B R O U T I N E C P U T I M E

SUBROUTINE CPUTIME(CPTIME)
REAL*4 CPTIME
TYPE TB TYPE

SEQUENCE
REAL*4 USRTIME
REAL*4 SYSTIME

END TYPE
TYPE (TBJTYPE) DTIME_SRC
CPTIME = DTIME (DTIME SRC)
RETURN
END
END SUBROUTINE CPUTIME

S U B R O U T I N E T I M E R

SUBROUTINE TIMER(DELTA) 
REAL*4 DELTA,CPU2 
CALL CPUTIME(CPU2)
DELTA * CPU2
R E T U R N
END

C END SUBROUTINE TIMER
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c 
c
C VALIDATION VERSION
C OF
C POLYGONAL APPROXIMATION AND REDUCTION TECHNIQUE
C (PART)
C ALGORITHM
C FOR
C ACYCLIC, DIRECTED NETWORKS
C USING
C "SEQUENTIAL APPROXIMATION" METHOD
C 
C
C THIS PROGRAM GENERATES "STRONGLY RANDOMIZED NETWORKS," REDUCES
C THEM WITH THE PART ALGORITHM USING "SEQUENTIAL APPROXIMATION,"
C SIMULATES THEM, AND OUTPUTS STATISTICAL COMPARISONS OF THE
C PART-APPROXIMATED AND SIMULATED NETWORK THROUGHPUT DISTRIBUTIONS.
C THE PROGRAM IS WRITTEN IN FORTRAN 77 AND IS PRESENTLY DESIGNED
C TO BE OPERATED IN A TIME SHARING MODE WITH ALL DATA INPUT FROM
C TWO (2) DATA FILES. THE PROGRAM DIRECTS OUTPUT IN NINE (9)
C OPTIONAL FORMATS TO A TIME SHARING TERMINAL. IF DESIRED, THE
C READ STATEMENTS AT THE BEGINNING OF THE MAIN PROGRAM CAN BE
C MODIFIED TO ALLOW DATA INPUT DIRECTLY FROM THE TIME SHARING
C TERMINAL.
C
C THE CURRENT DIMENSIONS OF THE PROGRAM ALLOW A NETWORK WITH A
C MAXIMUM OF 100 NODES AND A MAXIMUM OF 99 ACTIVITIES BEGINNING
C AT EACH NODE. THESE LIMITS CAN BE EXPANDED BY CHANGING THE
C DIMENSIONS OF THE XINT AND VALUE ARRAYS.
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C INSTRUCTIONS FOR BUILDING DATA FILES
C --------------------------------------------------------
C
C DATA FILE DATAH.VAL
C
C THIS DATA FILE CONTAINS DESCRIPTIONS OF THE PRECODED DISTRIBUTIONS
C OF ACTIVITY DURATION.
C
C THERE ARE 5 FIELDS OF DATA.
C FIELD 1 IS THE CODE FOR THE TYPE OF DISTRIBUTION.
C 1 = TRIANGULAR DISTRIBUTION
C 2 = NORMAL DISTRIBUTION
C 3 = EXPONENTIAL DISTRIBUTION
C 4 = GAMMA DISTRIBUTION
C 5 = BETA DISTRIBUTION
C 6 = UNIFORM DISTRIBUTION
C FIELD 2 IS
C MODE FOR A TRIANGULAR DISTRIBUTION.
C MEAN FOR A NORMAL DISTRIBUTION.
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

MEAN FOR AN EXPONENTIAL DISTRIBUTION.
ALPHA FOR A GAMMA OR A BETA DISTRIBUTION.
1 / (B-A) FOR A UNIFORM DISTRIBUTION.

FIELD 3 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION. 
FIELD 4 IS THE MINIMUM VALUE OF THE DISTRIBUTION. 
FIELD 5 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.

DATA FILE CONTROL.VAL

THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL 
PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.

THERE
FIELD
FIELD

0
FIELD

0
FIELD

1

2 =

3 =

ARE 7 FIELDS OF DATA.
1 IS THE NUMBER OF NETWORKS TO BE GENERATED (MAXIMUM = 100) 

IS THE NUMBER OF NODES IN THE NETWORK.
NUMBER OF NODES IS TO BE RANDOMLY GENERATED.
IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
NUMBER OF ACTIVITIES IS TO BE RANDOMLY GENERATED.
IS THE OUTPUT OPTION DESIRED FOR THE PART RESULTS.
A DESCRIPTION OF EACH OF THE 10 CLASSES OF THE 
FINAL DISTRIBUTION IN THE FORM OF Y = B(O) + B (l) X.
A CUMULATIVE DISTRIBUTION FUNCTION OF THE FINAL 
DISTRIBUTION.
A DISCRETE PROBABILITY DENSITY FUNCTION AND A 
SIMULATION FREQUENCY HISTOGRAM IN GRAPHICAL FORMAT.
A COMBINATION OF 1 AND 2 ABOVE.
A COMBINATION OF 1 AND 3 ABOVE.
A COMBINATION OF 2 AND 3 ABOVE.
A COMBINATION OF 1, 2, AND 3 ABOVE.
ONLY THE EXPECTED VALUE AND STANDARD DEVIATION.
ONLY STATISTICAL COMPARISONS.
IS THE NUMBER OF ITERATIONS OF THE MONTE CARLO 

SIMULATION REQUESTED (MAXIMUM = 10,000).
0 = NO MONTE CARLO SIMULATION IS REQUESTED.

FIELD 6 IS THE NUMBER OF PRECODED DISTRIBUTIONS (MAXIMUM = 2 0 ) .  
FIELD 7 IS THE PROBABILITY THAT A NODE IS ON THE OUTPUT CRITICAL 

LIST.

NOTE

ALL UNUSED FIELDS MUST BE ZEROED OUT.

4
5
6
7
8 
9

FIELD

M A I N P R O G R A M

REAL*8 XINT(101,100,12),VALUE(101,100,10 ,3),A(130) 
REAL*8 ZVAL(130 ,5 ),XX(100,2), TOTAAR(51),COMPAR(100,4) 
REAL*8 SIMT(100,10000),SIMTOT(5 1 ),DIST(20,5)
REAL*8 AREA,AVG,COUNT,SIG,SIZE
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,X,XSIZE
,DIFF

REAL * 4 HIGH, HLOW, PERCNT, KSCR2 0, KSCRl 0 , KSCRO 5 , KSCR02, KSCRO1, DMAX 
, AMEAN, ASTD, PROB, RN, STEP, UP, XT 

INTEGER I , IEDN, ICOUNT, IACT, IOCL, IPRE, IFRINT, ISNODE, ISEED 
, ICODED, IFLAG,IFLAG1 
,MM
, N, NACTS, NAN, NCL , NET , NSIM, NGEN , NGENCT , NCODED, NACTSS, NSTART
,J ,J 1
,K,KK
, L, L I, L2, L3, LASTK, L3COUNT, LA 
, UA

REAL*4 DELTA,TOTTIM
DIMENSION NET(100,103),IOCL(100),IPRE(99,2)
COMMON/ PARAl/XINT,VALUE 
COMMON/ PARA2/ ZVAL 
COMMON/ PARA3/A 
COMMON/PARA4/XX 
COMMON/ PARA5/NET 
COMMON/PARA6/ SIMT 
CHARACTER*1 KBL,KBM 
DATA KBL/' , /,KBM/'*’/
DATA NCL/0/
DATA TOTTIM/0.0 /
EXTERNAL RNSET,RNNOR,RNUN

INITIALIZE RANDOM NUMBER GENERATOR.

ISEED = 123456789 
CALL RNSET(ISEED)

OPEN INPUT AND OUTPUT FILES

OPEN (UNIT = 12, FILE = ’d a ta h .v a l ')
OPEN (UNIT = 1 3 , FILE = ' c o n tro l .v a l ')

READ CONTROL INFORMATION.

READ (13,1900) NGEN,N,NACTS,NAN,NSIM,NCODED,PROB 
NSTART = N 
NACTSS = NACTS

DO 0900 READS DISTRIBUTION DATA FROM DATAH.VAL AND LOADS IT 
INTO THE DIST ARRAY.

DO 0900 I = 1 ,NCODED
READ (12,1902) (D IST(I,J), J= l,5 )

0900 C O N TIN U E
STEP = 1 .0 /REAL(NCODED)

DO 1540 GENERATES, REDUCES, SIMULATES, AND STATISTICALLY 
COMPARES NGEN "STRONGLY RANDOMIZED NETWORKS."

DO 1540 NGENCT = 1,NGEN 
CALL TIMER(DELTA)
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N = NSTART 
NACTS * NACTSS

RANDOMLY GENERATE THE NUMBER OF NODES (N), IF NECESSARY.

IF (N .GT. 0) GO TO 0910 
CALL RNUN(1 ,RN)
XT = 2.0+(99.0*RN)
N = INT(XT)
IF (N .GT. 100) N = 100

RANDOMLY GENERATE THE NUMBER OF ACTIVITIES (NACTS), IF NECESSARY.

0910 IF (NACTS .GT. 0) GO TO 0920 
LA = N-l 
UA = N*(N-l)/2
AMEAN = ( (REAL(LA+UA))/2.) — ({ (REAL(UA-LA))**2)/500.0)
ASTD = (REAL(UA-LA))/2.5 
CALL RNNOR(1 ,RN)
XT = (RN *ASTD)+AMEAN 
NACTS = INT(XT)
IF (NACTS .LT. LA) NACTS = LA
IF (NACTS .GT. UA) NACTS = UA

RANDOMLY GENERATE THE NETWORK (NET ARRAY) .

0920 CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
CALL GENRAN(N,NACTS)
CALL TIMER(DELTA)

RANDOMLY GENERATE THE OUTPUT CRITICAL LIST (IOCL).

DO 0930 I  = 1,N-1 
IOCL( I ) = 0
IF (PROB .EQ. 0.0) GO TO 0930 
CALL RNUN(1,RN)
IF (RN .LT. PROB) IOCL(I) = 1 

0930 CONTINUE
IOCL(N) = 1

DO 1025 RANDOMLY SELECTS ONE OF THE PRECODED DISTRIBUTIONS 
FOR EACH ACTIVITY AND LOADS THE DISTRIBUTION'S DATA INTO 
THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF 
THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A 
PIECEWISE POLYGONAL FUNCTION.

DO 1025 I  = 1 ,N-1 
LI = I
DO 1020 J  = 1 ,NET(I,103)
L2 = J
CALL RNUN(1,RN)
UP = 0.0
DO 1000 K = 1 ,NCODED 
U P =  U P + S T E P
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IF (RN .GT. UP ) GO TO 1000 
ICODED = K 
GO TO 1010 

1000 CONTINUE
1010 VALUE(Ll,L2,l,3) = DIST(ICODED,1)

VALUE(L I,L2,2 ,3 ) = DIST(ICODED,2)
VALUE(L I,L 2,3 ,3 ) = DIST(ICODED,3)
XINT(L l,L2,1) * DIST(ICODED,4)
XINT(L1,L2,2) = DIST(ICODED,5)
IF (IDINT(VALUE(Ll,L2, 1 ,3)) .NE. 6) THEN 
CALL LINEAR(L1,L2,NCL)
GO TO 1020

DO 1015 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE 
FORM FOR SUBROUTINES SERIES AND PARA.

ELSE
XINT(L l,L2,11) = XINT(L1,L2,2)
X = XINT(Ll, L2,1)
XSIZE = (XINT(L1,L2,2)-XINT(L1,L2,1))/10.
DO 1015 K = 1,10
VALUE(L1,L2,K,1) = VALUE(L1,L2,2,3)
VALUE(L1,L2,K,2) = 0.0 
XINT(L l,L2,K) = X 
X = X+XSIZE 

1015 CONTINUE 
END IF 

1020 CONTINUE 
1025 CONTINUE

MONTE CARLO SIMULATION OF THE NETWORK.

IF (NSIM .EQ. 0) GO TO 1030 
CALL TIMER( DELTA)
TOTTIM = TOTTIM+DELTA 
CALL SIMULT(N,NSIM)
CALL TIMER (DELTA)

REDUCTION OF THE NETWORK BEGINS.

DO 1040 CHECKS IF A CONVOLUTION (SERIES-REDUCTION) OPERATION 
IS POSSIBLE, i . e . ,  IF THERE EXISTS A NODE I NOT ON THE OUTPUT 
CRITICAL LIST SUCH THAT

IN-DEGREE NODE I = OUT-DEGREE NODE 1 = 1.

1030 L3COUNT = 2 
1035 DO 1040 I=L3COUNT,N-l 

L3 = I
IF ( (NET(I,102)+NET(I,103)) .EQ. 2 .AND. IOCL(I) .EQ. 0)

SGO TO 1050 
1040 CONTINUE

IF (IN-DEGREE NODE I + OUT-DEGREE NODE I)  > 2 FOR ALL I  NOT = 
OR N, NETWORK IS NONSEPARABLE, SO PROCEED TO "SEQUENTIAL 
APPROXIMATION"
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IF (L3COUNT .EQ. 2) GO TO 1145 
GO TO 1080

A CONVOLUTION IS POSSIBLE WITH THE TWO ACTIVITIES, ONE OF WHICH 
TERMINATES AT NODE L3 AND THE OTHER OF WHICH STARTS AT NODE L3. 
DO 1060 IDENTIFIES THE STARTING NODE NUMBER AND THE ACTIVITY 
NUMBER OF THE ACTIVITY TERMINATING AT NODE L3. THEN THE SERIES 
SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES IS CONVOLUTED INTO 
AN EQUIVALENT ACTIVITY.

1050 DO 1060 1=1,L3-1
DO 1060 J=2,NET(I,103)+l 
Ll = I 
L2 = J - l
IF (NET(I,J) .EQ. L3) GO TO 1070 

1060 CONTINUE
1070 CALL SERIES(L l, L2, L3 , 1)

NET(L1,L2+1) = NET(L3,2)
NET(L3,2) = 0 
NET(L3,101) = 0 
NET(L3,102) = 0 
NET(L3,103) = 0 
L3COUNT = L3+1
IF (L3COUNT .EQ. N) GO TO 1080 
GO TO 1035

C
C DO 1140 CHECKS IF A MAXIMUM ( PARALLEL-REDUCTION) OPERATION IS
C POSSIBLE, i . e . ,  IF THERE EXIST TWO DIFFERENT ACTIVITIES, A1 AND
C A2, SUCH THAT
C STARTING NODE (Al) = STARTING NODE (A2), AND
C ENDING NODE (Al) = ENDING NODE (A2).
C THEN THE PARALLEL SUBNETWORK CONSISTING OF THESE TWO ACTIVITIES
C IS PARALLEL-REDUCED WITH A MAXIMUM OPERATION INTO AN EQUIVALENT
C ACTIVITY.
C

1080 DO 1140 1=1,N-l 
Ll = I

1085 DO 1090 J=2,NET(L1,103)
L2 = J - l
IF (NET(L1,J) .EQ. 0) GO TO 1140 
DO 1090 K=J+1, NET(L1,103)+1 
L3 = K-l
IF (NET(L1,J) .EQ. NET(L1,K)) THEN 
IEDN = NET(L1,J)
GO TO 1110 
ELSE
GO TO 1090 
END IF 

1090 CONTINUE
GO TO 1140 

1110 CALL PARA(L1,L2,L3)
NET(L1,103) = NET(L1,103)-1 
NET(IEDN,102) = NET(IEDN,102)-1 
DO 1120 K=L3,NET(L1,103)
NET(L1,K+1) = NET(Ll,K+2)
DO 1115 L=1,10
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XINT(L1,K,L)= XINT(L1 ,K+1 ,L)
VALUE(L l,K , L ,1) = VALUE(L l,K+l, L ,1)
VALUE(Ll,K,L,2) = VALUE(Ll,K+1,L,2)

1115 CONTINUE
XINT(L1,K ,11) = XINT(L1,K+1,11)

1120 CONTINUE
K * NET(L1, 103)+1 
NET(L1,K+1) = 0 
DO 1130 L = l,10 
XINT(Ll,K,L) = 0.
VALUE(L1,K,L,1) = 0.
VALUE(Ll,K,L,2) = 0.

1130 CONTINUE
XINT(L1,K,11) = 0.
GO TO 1085 

1140 CONTINUE
GO TO 1030

THROUGH 1146 CHECKS IF THE NETWORK HAS BEEN SERIES-PARALLEL 
REDUCED TO A SINGLE EQUIVALENT ACTIVITY.

1145 IF (NET(1,103) .NE. 1) GO TO 1150 
IF (NET(N,102) .NE. 1) GO TO 1150 
DO 1146 1=2,N-l
IF (NET(1,102 ) + NET(1,103)) 1560,1146,1150

1146 CONTINUE

THE NETWORK HAS BEEN SERIES-PARALLEL REDUCED TO A SINGLE EQUIVA
LENT ACTIVITY. DO 1147 LOADS THE DISTRIBUTION OF THIS ACTIVITY 
INTO THE 100TH ACTIVITY POSITION OF NODE N.

DO 1147 J= l,1 0
XINT(N,100,J) = XINT(1,1,J)
VALUE(N,100,J , l )  = VALUE(1 ,1 ,J , l )
VALUE(N,100,J , 2) = VALUE(1,1,J,2)

1147 CONTINUE
XINT(N,100,11) = XINT(1,1,11)
GO TO 1240

DO 1220 REDUCES THE NONSEPARABLE NETWORK USING THE "SEQUENTIAL 
APPROXIMATION" METHOD.

1150 DO 1220 1=2,N 
ICOUNT = 0
IF (NET(I,101)) 1560,1220,1155

DO 1170 DETERMINES THE STARTING NODE NUMBER AND THE ACTIVITY 
NUMBER OF ALL THE ACTIVITIES WHICH TERMINATE AT NODE I > STARTING 
NODE.

1155 DO 1170 J= 1 ,I-1
IF (NET(J,101)) 1560,1170,1160 

1160 DO 1169 J1=2,NET(J,103)+l
IF (NET(J,J1) -  I) 1169,1165,1169 

1165 ICOUNT = ICOUNT+1 
IPRE(ICOUNT,!) = J
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IPRE(ICOUNT,2) = J l-1
1169 CONTINUE
1170 CONTINUE

C
C THROUGH 1220 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION
C THROUGH THE STARTING NODE OF THE ACTIVITY AND THE RESOURCE
C CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH TERMINATES
C AT NODE I AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
C
C IF THE FIRST STARTING NODE = NODE 1, THE CONVOLUTION IS EQUAL TO
C THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE I .
C

IF ( IPRE(1 ,1) .EQ. 1) THEN 
IACT = IPRE(1,2)
DO 1175 J= l,10
XINT(101 ,1 ,J) = XINT(1 ,IACT, J )
VALUE(101,1,J,1) = VALUE(1 ,IACT, J ,1)
VALUE(101,1,J,2) = VALUE(1 ,IACT,J,2)

1175 CONTINUE
XINT(101,1,11) = XINT(1 ,IACT,11)

C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE FIRST STARTING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
ISNODE = IPRE(1,1)
IACT = IPRE(1,2)
DO 1180 J= l,10
XINT(101 ,1 ,J) = XINT(ISNODE,100,J)
VALUE(101 ,1 ,J , l )  = VALUE(ISNODE,100,J , 1)
VALUE(101,1, J ,2 )  = VALUE(ISNODE,100,J , 2)

1180 CONTINUE
XINT(101,1,11) » XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE FIRST ACTIVITY TERMINATING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1185 J= l,10
XINT(101 ,2 ,J) = XINT(ISNODE,IACT,J)
VALUE(101,2,J,1) = VALUE(ISNODE,IACT,J,l)
VALUE(1 0 1 ,2 ,J , 2) = VALUE(ISNODE,IACT,J,2)

1185 CONTINUE
XINT(101,2,11) = XINT(ISNODE,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
END IF

C
C IF THERE IS ONLY ONE ACTIVITY TERMINATING AT NODE I ,  THE
DISTRIBUTION
C THROUGH NODE I IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 100TH ACTIVITY POSITION OF NODE I .
C
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IF (ICOUNT .EQ. 1) THEN 
DO 1190 J= l,10
XINT(1,100,J) = XINT(101,1, J )
VALUE( I,1 0 0 ,J ,1 )  = VALUE(101,1, J ,  1)
V A L U E ( I ,100,J ,2 ) = VALUE(1 0 1 ,1 ,J ,2 )

1190 CONTINUE
XINT(I,100,11) = XINT(101,1,11)

C
C IF THERE ARE TWO OR MORE ACTIVITIES TERMINATING AT NODE I ,  LOAD
THE
C DISTRIBUTION THROUGH THE STARTING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1205 K=2,ICOUNT 
ISNODE = IPRE(K,1)
IACT = IPRE(K,2)
DO 1195 J= l,10
X I N T (101 ,3 ,J) = X I N T ( I S N O D E ,100,J)
VA LU E(101 ,3 ,J ,1 ) = V A L U E (IS N O D E ,100,J , 1)
VALUE(101 ,3 ,J , 2) =* VALUE(ISNODE, 100,J , 2)

1195 CONTINUE
XINT(101,3,11) = XINT(ISNODE ,100,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1200 J= l,10
XINT(101 ,4 ,J) = XINT(ISNODE,IACT,J)
VA LU E( 101 ,4 ,J ,1 ) = VALUE( IS N O D E , IA C T , J , 1)
VALUE(1 0 1 ,4 ,J , 2) = VALUE(ISNODE,IACT,J,2)

1200 CONTINUE
XINT(101,4,11) = XINT(ISNODE,IACT,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

CALL PARA( 101,1,3)
1205 CONTINUE

C
C THE DISTRIBUTION THROUGH NODE I  IS THE MAXIMUM IN TEMPORARY
LOCATION 1.
C LOAD THIS INTO THE 100TH ACTIVITY POSITION OF NODE I .
C

DO 1210 J= l,10
XINT(I,100,J) = XINT(101,1 , J)
V A LU E( I ,1 0 0 ,J ,1 )  = VALUE(1 0 1 ,1 ,J ,1 )
V A L U E ( I ,100,J ,2 ) = VALUE(1 0 1 ,1 ,J ,2 )

1210 CONTINUE
X I N T ( I , 100,11) = X I N T (101,1,11)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

397

END IF 
1220 CONTINUE

C
C THE DISTRIBUTION THROUGH NODE N IS THE FINAL EQUIVALENT ACTIVITY 
OF THE
C NETWORK.
C
1240 CONTINUE

IF (NAN .NE. 9) THEN 
PRINT 1910
PRINT 1915,NGENCT,NGEN 
ELSE
GO TO 1245 
END IF

C
C IF NODE I IS ON THE OUTPUT CRITICAL LIST, DO 1385 PRESENTS THE
C DISTRIBUTION THROUGH NODE I IN THE OUTPUT.
C
1245 IFLAG = 0

DO 1385 I = 2,N
IF (IOCL(I) .EQ. 0) GO TO 1385
IF ((IFLAG .EQ. 1) .AND. (NAN .NE. 9)) PRINT 1910 
IFLAG = 1 
L = 1 
KK = 0
DO 1270 J = 1,10

C
C THE XX ARRAY IS USED FOR HISTOGRAM AND CDF CALCULATIONS.
C

XX(1,1) = XINT(I,100,J)
SIZE = (XINT(1,100,2)-XINT(1,100,1))/5.
LASTK = L+4 
DO 1250 K = L,LASTK 
KK = KK+1
XX(K,2) = VALUE(I,100,J,1)+(VALUE(I,100,J,2)*XX(K,1))
IF ((KK .LE. 1).AND.(L .GT. 4)) XX(K,2) = (((VALUE(1,100,J,2 ) 

&*XX(K,1))+VALUE(I,100,J,1))+(VALUE(I,100,J-l,2)*XX(K,1))+
&VALUE(I,100,J-l,1))/2.
XX(K+1,1) * XX(K,1)+SIZE 

1250 CONTINUE 
KK = 0 
L = L+5
IF ((NAN .EQ. 1).OR.(NAN .EQ. 4).OR.(NAN .EQ. 5).OR.

6(NAN .EQ. 7)) GO TO 1260 
GO TO 1270 

1260 IF (I .NE. N .AND. J .EQ. 1) THEN 
PRINT 1920,1
ELSE IF (I .EQ. N .AND. J .EQ. 1) THEN 
PRINT 1925 
END IF
PRINT 1930,J,XINT(I,100,J),XINT(I,100,J+l)
PRINT 1940,VALUE(I,100,J,l),VALUE(I,100,J,2)

1270 CONTINUE
XX(51,2)=VALUE(I,100,10,1)+VALUE(I,100,10,2)*XX(51,1)

C
C TOTAAR IS USED FOR CDF CALCULATIONS.
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c
AREA = 0.0 
DO 1280 J = 1,50
AREA = AREA+( (XX( J, 2 )+XX( J+l, 2 ) )*SIZE*.5)
TOTAAR(J) = AREA 

1280 CONTINUE
AREA = 1.0/AREA 
DO 1290 J = 1,50 
TOTAAR(J) = TOT AAR (J) ‘AREA 

1290 CONTINUE
DO 1295 J = 51,2,-1 
TOTAAR(J) = TOTAAR(J-l)

1295 CONTINUE
TOTAAR(1) =0.0 
XX(1,1) = XINT(I,100,1)
IF (NAN .EQ. 9) GO TO 1350
IF ((NAN .EQ. 2).OR. (NAN .EQ. 4).OR. (NAN .EQ. 6) .OR.

&(NAN .EQ. 7)) GO TO 1300 
GO TO 1320 

1300 PRINT 1910 
PRINT 1950 
DO 1310 J = 1,51 
PRINT 1960,XX(J,1),TOTAAR(J)

1310 CONTINUE
1320 IF ((NAN .EQ. 3).OR.(NAN .EQ. 5).OR.(NAN .EQ. 6).OR.

&(NAN .EQ. 7)) GO TO 1330 
GO TO 1340 

1330 IPRINT = 51 
IFLAG1 = 0
CALL PLOT(IPRINT,KBL,KBM,IFLAG1)

1340 CONTINUE
DO 1360 COMPUTES AN APPROXIMATED EXPECTED VALUE AND 
DO 1370 COMPUTES AN APPROXIMATED STANDARD DEVIATION 
USING GROUPED DATA.

1350 AVG = 0 . 0  
SIG =0.0 
DO 1360 MM = 1,50
AVG = AVG+( (XX(MM, 1 ) + (SIZE/2 .) ) * (TOTAAR(MM+l )-TOTAAR(MM) ) ) 

1360 CONTINUE
COMPAR(NGENCT,3) = AVG 
DO 1370 MM = 1,50
SIG = SIG+(((XX(MM,1)+(SIZE/2.)—AVG)**2)*(TOTAAR(MM+l)- 
STOTAAR(MM)))

1370 CONTINUE
SIG = DSQRT(SIG)
COMPAR(NGENCT,4) = SIG
IF (NAN .EQ. 9) GO TO 1385
PRINT 1910
PRINT 1970,AVG,SIG
DO 1380 MM = 1,4
BLOW = AVG— (REAL(MM) *SIG)
BIGH = AVG+(REAL(MM)*SIG)
IT IS ASSUMED TBAT THE DISTRIBUTION TBROUGH NODE I RESEMBLES
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A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO 
1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE 
EXPECTED VALUE.
IF (MM .EQ. 1) PERCNT * 68.24
IF (MM .EQ. 2) PERCNT * 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
IF (I .NE. N) THEN 
PRINT 1980,1,HLOW, HIGH,PERCNT 
ELSE
PRINT 1987,HLOW,HIGH,PERCNT 
END IF 

1380 CONTINUE 
1385 CONTINUE

IF (NSIM .EQ. 0) GO TO 1540
DO 1510 COMPILES OUTPUT FROM THE MONTE CARLO SIMULATION FOR EACH 
NODE ON THE OUTPUT CRITICAL LIST.
DO 1510 1=2,N
IF (IOCL(I) .EQ. 0) GO TO 1510
DO 1390 COMPUTES THE PARTITION OF THE INTERVAL OVER WHICH THE
THROUGHPUT DISTRIBUTION THROUGH NODE I IS DEFINED.
XX(1,1) = XINT(I,100,1)
SIZE = (XINT(I,100,2)-XINT(1,100,1))/5.
DO 1390 J=2,51 
XX(J,1) = XX(J-1,1)+SIZE 

1390 CONTINUE
DO 1410 COMPILES THE CUMULATIVE DISTRIBUTION FUNCTION.
COUNT =0.0 
SIMTOT(1) =0.0 
DO 1410 J=l,50
DO 1400 K=1,NSIM
IF ((XX(J,1) .LE. SIMT(I,K)) .AND. (SIMT(I,K) .LT. XX(J+1,1))) 

&COUNT = COUNT+1.
1400 CONTINUE

XX(J+1,2) = COUNT/REAL (NSIM)
SIMTOT(J+l) = SIMTOT(J)+XX(J+1,2)
COUNT =0.0 

1410 CONTINUE
IF (NAN .EQ. 9) GO TO 1450
PRINT 1910
IF (I .NE. N) THEN
PRINT 1921,1
E L S E
PRINT 1926 
END IF
IF ((NAN .EQ. 2) .OR. (NAN .EQ. 4) .OR. (NAN .EQ. 6) .OR.

&(NAN .EQ. 7)) GO TO 1420 
GO TO 1440 

1420 PRINT 1950
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DO 1430 J=l,51
PRINT 1960,XX(J,1),SIMTOT(J)

1430 CONTINUE
1440 IF ((NAN .EQ. 3) .OR. (NAN .EQ. 5) .OR. (NAN .EQ. 6) .OR.

&(NAN .EQ. 7)) GO TO 1450 
GO TO 1470 

1450 DO 1460 J=l,50
XX(J,1) = XX(J,l)+(SIZE/2.)
XX(J,2) = XX(J+1,2)

1460 CONTINUE
IF (NAN .EQ. 9) GO TO 1475 
IPRINT = 50 
IFLAG1 = 1
CALL PLOT(IPRINT,KBL,KBM, IFLAG1)

1470 CONTINUE
DO 1480 COMPUTES AN APPROXIMATED EXPECTED VALUE AND 
DO 1490 COMPUTES AN APPROXIMATED STANDARD DEVIATION 
USING GROUPED DATA.

1475 AVG = 0 . 0  
SIG = 0 . 0  
DO 1480 J=1,50
AVG = AVG+(XX(J,1)*(SIMTOT(J+l)—SIMTOT(J)))

1480 CONTINUE
DO 1490 J=1,50
SIG = SIG+(((XX(J, 1 )-AVG)**2)*(SIMTOT(J+l)-SIMTOT(J)))

1490 CONTINUE
SIG = DSQRT(SIG)
IF (NAN .EQ. 9) GO TO 1510
PRINT 1910
P R I N T  1970,AVG,SIG
DO 1500 MM=1,4
HLOW =  A V G -(R E A L (M M ) * S I G )
HIG H =  A V G + ( R E A L ( M M ) * S I G )

IT IS ASSUMED THAT THE DISTRIBUTION THROUGH NODE I RESEMBLES 
A NORMAL DISTRIBUTION. THE FIXED PERCENTAGES CORRESPOND TO 
1, 2, 3, AND 4 STANDARD DEVIATIONS, RESPECTIVELY, FROM THE 
EXPECTED VALUE.
IF (MM .EQ. 1) PERCNT = 68.24
IF (MM .EQ. 2) PERCNT = 95.44
IF (MM .EQ. 3) PERCNT = 99.73
IF (MM .EQ. 4) PERCNT = 99.99
IF (I .NE. N) THEN 
PRINT 1980,1,HLOW,HIGH,PERCNT 
ELSE
PRINT 1987,HLOW,HIGH,PERCNT 
END IF 

1500 CONTINUE 
1510 CONTINUE

COMPUTE RELATIVE ERROR OF APPROXIMATED MEAN AND STANDARD DEVIATION 
OF NETWORK THROUGHPUT DISTRIBUTION.
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C O M P A R (N G E N C T ,3 )  =  ( ( COMPAR ( N G EN C T, 3 ) - A V G ) / A V G ) * 1 0 0 . 0  
C O M P A R (N G E N C T ,4 )  =  ( ( COM PA R (N G EN C T,4 ) - S I G ) / S I G )  * 1 0 0 . 0

COMPARE POLYGONAL APPROXIM ATION O F  THROUGHPUT D I S T R I B U T I O N  
W ITH SIM ULATED THROUGHPUT D I S T R I B U T I O N  U S I N G  THE KOLMOGOROV- 
SM IRNOV ONE-SAM PLE T E S T .

K S C R 2 0  =  1 . 0 7 3 0 / S Q R T ( 5 0 . )
K S C R 1 0  =  1 . 2 2 3 9 / S Q R T ( 5 0 . )
KSC R O5  =  1 . 3 5 8 1 / S Q R T ( 5 0 . )
KSCRO2  =  1 . 5 1 7 4 / SQ R T ( 5 0 . )
KSCRO 1 => 1 . 6 2 7 6 / S Q R T (  5 0 . )

COMPUTE THE K-S TEST STATISTIC D-MAX.
DMAX = 0.0
DO 1530 I = 2,51
DIFF = DABS(SIMTOT(I)-TOTAAR (I))
IF (DIFF .GT. DMAX) DMAX = DIFF 

1530 CONTINUE
IF (NAN .NE. 9) THEN 
PRINT 1910 
PRINT 1991,DMAX
PRINT 1992,KSCR20,KSCRl0,KSCRO 5 , KSCRO 2,KSCRO1
IF (DMAX .LE. KSCRO5) PRINT 1993
ELSE
COMPAR(NGENCT,1) = DMAX 
COMPAR(NGENCT,2) = 0.0
IF (DMAX .LE. KSCR20) COMPAR(NGENCT,2) 2 0 . 0

.AND.

.AND.

(DMAX
(DMAX
(DMAX
(DMAX

.LE. KSCRl0)) 

.LE. KSCRO5))

.LE.

.LE.
KSCR02)) 
KSCRO1))

IF ((DMAX .GT. KSCR20) .AND 
*COMPAR(NGENCT,2) =10.0 
IF ((DMAX .GT. KSCRl0) .AND.

*COMPAR(NGENCT,2) = 5.0 
IF ((DMAX .GT. KSCR05)

*COMPAR(NGENCT,2) =2.0 
IF ((DMAX .GT. KSCR02)

‘COMPAR(NGENCT,2) =1.0 
END IF
CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 

1540 CONTINUE
IF (NAN .NE. 9) THEN 
PRINT 1996,TOTTIM 
STOP 
ELSE
PRINT 1994,NGEN,N,NACTS
PRINT 1992, KSCR20,KSCR10, KSCR05, KSCR02, KSCRO 1 
PRINT 1995
CALL TIMER(DELTA) 
DO 1550 I = 1,NGEN 
IF (COMPAR(1,2) 

&COMPAR(1,4)
IF (COMPAR(I,2)

&COMPAR(1,4)
IF (COMPAR(1,2) 

&COMPAR(1,4)

.EQ. 0.0) P R IN T

.EQ. 1.0) P R IN T

.EQ. 2.0) P R IN T

1981,COMPAR(1,1),COMPAR( 1,3)
1982,COMPAR(1,1),COMPAR( 1,3)
1983,COMPAR(1,1),COMPAR (1,3)
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IF (COMPAR(1,2) .EQ. 5.0) PRINT 1984,COMPAR(1, 1),COMPAR( 1, 3) ,
&COMPAR (1,4)
IF (COMPAR(I,2) .EQ. 10.0) PRINT 1985,COMPAR(I, 1),COMPAR( 1, 3) , 

&COMPAR(I,4)
IF (COMPAR(1,2) .EQ. 20.0) PRINT 1986,COMPAR(I,1) ,COMPAR(I,3),

&COMPAR(1,4)
1550 CONTINUE

CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
PRINT 1996,TOTTIM 
END IF 
STOP 

1560 PRINT 1990 
STOP
FORMAT STATEMENTS

1900 FORMAT (2(13,IX),14,IX,II,IX,15, IX,12,IX,F4 .2)
1901 FORMAT (3(12,25(IX,12)/),12,21(IX,12),IX,II,2(IX, 12))
1902 FORMAT (F1.0,4(1X,F8.2))
1910 FORMAT (1H1)
1915 FORMAT (IX,'THE RESULTS FOR NETWORK NUMBER ',13,' OF ',13,

& ’ NETWORKS GENERATED ARE:' //)
1920 FORMAT (IX,'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION', 

S' THROUGH NODE',IX,12,IX,'IS:' //)
1921 FORMAT (IX,'THE SIMULATED TIME DISTRIBUTION',

S' THROUGH NODE',IX,12,IX,'IS:' //)
1925 FORMAT (IX,'THE POLYGONAL APPROXIMATION OF THE TIME DISTRIBUTION’, 

&' THROUGH THE PROJECT IS:' //)
1926 FORMAT (IX,'THE SIMULATED TIME DISTRIBUTION',

S' THROUGH THE PROJECT IS:' //)
1930 FORMAT ( IX, ' INTERVAL',13,4X,'LOWER LIMIT =',F8.2,3X,

S'UPPER LIMIT =',F8.2 //)
1940 FORMAT (15X, 'X = (',F12.8,') + ( ',F12.8, ') T' //)
1950 FORMAT (14X,'CUMULATIVE DISTRIBUTION FUNCTION' //

S21X,'T',14X,'F(T)')
1960 FORMAT (16X,F9.3,F17.8)
1970 FORMAT (12X,'EXPECTED VALUE OF T =',F13.8 /

S12X, 'STANDARD DEVIATION OF T =',F13.8 //)
1980 FORMAT (IX,'THE PROBABILITY OF NODE ',13,' THROUGHPUT TIME',

S' FALLING BETWEEN' / 1X,F8.3,' TIME UNITS AND',F8.3,
S' TIME UNITS IS ABOUT ',F5.2,' %.'//)

1981 FORMAT (1X,F6.4,6X,' <1%',14X,F6.2,'%',9X,F6.2,'%')
1982 FORMAT (IX,F6.4,6X,' 1% - 2%',12X,F6.2,'%',9X,F6.2,'%')
1983 FORMAT (1X,F6.4,6X,' 2% - 5%',12X,F6.2,'%’,9X,F6.2,'%')
1984 FORMAT (1X,F6.4,6X,' 5% - 10%',11X,F6.2,'%',9X,F6.2,'%')
1985 FORMAT (1X,F6.4,6X,'10% - 20%',11X,F6.2,'%',9X,F6.2,'%')
1986 FORMAT (1X,F6.4,6X,’ >20%',13X,F6.2,'% ',9X,F6.2, ' %')
1987 FORMAT (IX,'THE PROBABILITY OF THE PROJECT THROUGHPUT TIME',

S' FALLING BETWEEN' / 1X,F8.3,' TIME UNITS AND ',F8.3,
S' TIME UNITS IS ABOUT ',F5.2,' %.'//)

1990 FORMAT (IX,'PROGRAM STOPPED’ / IX,'IMPROPER NODE NUMBER(S) '
S,'ENCOUNTERED')

1991 FORMAT (IX,'KOLMOGOROV-SMIRNOV ONE-SAMPLE TEST COMPARISON OF ',
S'POLYGONAL APPROXIMATION' / IX,'OF NETWORK THROUGHPUT DISTRIBUTION 
S AND SIMULATED NETWORK THROUGHPUT' / IX,'DISTRIBUTION:' //
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& 1 X ,'K-S TEST STATISTIC D-MAX =  ' ,  F 6 . 4  / )
1 9 9 2  FORMAT ( I X , ' K - S  C R I T I C A L  V A L U E S : '  /  1 5 X , ' 2 0  PE R C E N T  =  ’ , F 6 . 4  /  

S 1 5 X , ' 1 0  PERCENT =  ' , F 6 . 4  /  1 6 X , ' 5  PERCENT =  ' , F 6 . 4  /
& 1 6 X , ' 2  PERCENT =  ' , F 6 . 4  /  1 6 X , ' 1  PERCENT -  ' , F 6 . 4  / )

1 9 9 3  FORMAT ( I X , 'FAIL TO REJECT THE NULL HYPOTHESIS THAT THE ',
& 'DISTRIBUTIONS ARE THE SAME' /  I X , ‘AT THE 5% LEVEL OF ',
&'STATISTICAL SIGNIFICANCE.')

1 9 9 4  FORMAT ( I X , ’ S T A T I S T I C A L  COMPARISONS FOR T H E  ' , 1 3 , '  NETWORKS ' ,
& ' GENERATED' /  I X , ' W I T H  ' , 1 3 , '  NODES AND ' , 1 4 , '  A C T I V I T I E S  A R E : ' / /  
S )

1 9 9 5  FORMAT ( 1 0 X ,  ' P R O B A B IL IT Y  VALUE ' ,  3 X ,  'R E L A T I V E  E R R O R ' ,  2 X , ' R E L A T I V E  ' 
& , 'E R R O R ' /  2 X , ' D - M A X ' , 2 X , ' (T Y PE  1 ERROR P R O B ) ' , 5 X , ' O F  M E A N ' ,8 X ,
& 'O F  STN DEV' / )

1 9 9 6  FORMAT ( / /  I X , ' C P U  T IM E  FO R PART P R O C E S S IN G  I S  ' , F 8 . 3 , '  SECON DS' 
&/ / )

END
END MAIN PROGRAM

S U B R O U T I N E  P A R A

SUBROUTINE PARA (L1,L2,L3)
REAL*8 VALUE(101,100,10,3),XINT(101,100,12)
REAL*8 XVAL,ZVAL(130,5),PAR(2,15,6),FACT,B(130)
REAL*4 Z
INTEGER Ll,L2,L3,NVl,NV2 
INTEGER K4(2,30)
INTEGER I,IINT, N ,NCL,J ,K ,K3,L6,LASTJ,LASTK 
COMMON/PARA1/XINT,VALUE 
COMMON/PARA2/ZVAL 
COMMON/PARA3/B
SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE 
EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP 
F(X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.
NVl = 10 
NV2 = 10 
DO 2020 N = 1,2 
L6 = L2
IF (N .EQ. 2) L6 = L3 
FACT = 0
DO 2010 J = 1,10 
B (1) = XINT(L1,L6,J)
DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X) 
INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS 
CUMULATIVE DISTRIBUTION CAP F(X).
DO 2000 I = 1,2
XVAL = VALUE(Ll,L6,J,I)
Z = FLOAT(I)
PAR(N,J,1+1) = XVAL/Z
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PAR(N, J , 1) = PAR(N,J,l) + ( (—1.0)*(XVAL/Z)*(B (1)**I))
K4(N,J) = 1+1 

2000 CONTINUE
IF (J .GT. 1) PAR(N, J , 1) = PAR( N, J , 1)+FACT
FACT = PAR(N, J,1)+(PAR(N,J,2)*XINT(L1,L6,J+1) ) + (PAR(N, J ,  3)

(XINT(Ll,L6,J+l)**2))
2010 CONTINUE 
2020 CONTINUE

DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.

DO 2040 I  = 1,22 
IF (I .GT. 11) GO TO 2030 
B(I) = XINT(L l , L2, I )
GO TO 2040 

2030 B(I) = XINT(L1,L3,1-11)
2040 CONTINUE 

NCL = 21 
CALL SORT(NCL)

C
C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER-
C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
C

IINT = 0
LASTJ = NCL+1
DO 2080 J  = 1 ,LASTJ
IF ( (XINT(L1,L2,1) .GE. XINT(L1,L3,1 ) -0 .001) .AND.

&(XINT(L l, L2,1 ) .LE. XINT(Ll,L3,1)+0.001)) GO TO 2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(L l, L2,1) .LE. XINT(L1,L3,1)+0.001) GO TO 2050 
IF (XINT(L1,L3,J+l) .GE. XINT(L1,L2,1 )-0 .001) IINT = J 
IF ( (XINT(L1,L3,J+l) .LE. 0.001)

&.OR. ( (XINT(L l, L2,1) .GE. XINT(Ll,L3,J+l)-0.001)
&.AND. (XINT(L l, L2,1) .LE. XINT(L1,L3, J+ l)+ 0 .001)
&.AND. (XINT(Ll, L3,J+2) .LE. 0.001))) GO TO 2180 
GO TO 2080

2050 IF (XINT(L1,L2,J+l) .GE. XINT(L1,L3,1)-0.001) IINT = J  
IF ( (XINT(L1,L2,J+l) .LE. 0.001)

S.OR. ( (XINT(L1,L3,1) .GE. XINT(Ll,L2,J+l)-0.001)
&.AND. (XINT(L l, L3,1) .LE. XINT(L1,L2, J+ l)+ 0 .001)
&.AND. (XINT(L1,L2,J+2) .LE. 0.001))) GOTO 2160 
GO TO 2080 

2060 LASTK = NCL-(IINT-l)
DO 2070 K = 1 ,LASTK 
B(K) = B(K+IINT)
B(K+IINT) = 0 

2070 CONTINUE
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GO TO 2090 
2080 CONTINUE 
2090 NCL = NCL-IINT
C
C DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE
C EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED
C BETWEEN THE TWO ARCS.
C

NI = 0 
N2 = 0
DO 2150 I  = 1,NCL 
DO 2110 J  = 1,11

C
C DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION
C THAT ARE VALID FOR THE B(I) VALUE BEING CONSIDERED. NI AND
C N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.
C

IF (NI .GE. 1) GO TO 2100
IF ( ( (B( I ) .GE. XINT(Ll,L2,J)-0 .001) .AND. (B(I-t-l)

&.LE. XINT(Ll,L2, J + l)+0.001)) .OR. (XINT(Ll,L2, J + l) .LE. 0.001)) 
&N1 = J  

2100 CONTINUE
IF (N2 .GE. 1) GO TO 2110
IF ( ( ( B( I ) .GE. XINT(Ll,L3, J ) -0.001) .AND. (B(I+1)

&.LE. XINT(L1,L3, J+ l)+0.001)) .OR. (XINT(L1,L3, J + l) .LE. 0.001)) 
&N2 = J 

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) = 1
IF (Nl .GT. NVl) K 4(l,N l) = 1

C
C DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR
C CAP F(X) AND CAP G(X) .
C

LASTJ = K4(2,N2)
LASTK = K4(1,N1)
DO 2130 J  = 1 ,LASTJ 
DO 2120 K = 1 ,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) = 1
IF (Nl .GT. NVl) PAR(1,N1,K) = 1
K3 = J+K-l
ZVAL(I,K3) = ZVAL(I,K3)+(PAR(1,N1,K)*PAR(2,N2, J ) )

2120 CONTINUE 
2130 CONTINUE

C
C DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE
C MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A
C LITTLE H(X) FOR THAT PRODUCT.
C

DO 2140 J  = 1,4
2VAL(I , J ) = ZVAL(I , J + l)‘FLOAT(J )
ZVAL(I, J + l ) = 0 

2140 CONTINUE 
Nl = 0 
N2 = 0 

2150 CONTINUE
C
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LINEAR IS CALLED TO PIECEWISE POLYGONALIZE TEE RESULTS OF THE 
PARALLEL REDUCTION WITH THE B(O) AND B (l) FORM IN EACH OF 10 
CLASSES.

VALUE(Ll,L2,1 ,3 ) = 99.
CALL LINEAR(L1,L2,NCL)
GO TO 2180 

2160 DO 2170 I = 1,10
VALUE(L l,L2,1 ,1 )  = VALUE(Ll,L3,1 ,1 )
VALUE(Ll,L2,I,2) = VALUE(Ll,L3,I,2)
XINT(L l, L2, I ) = XINT(Ll, L3, I)

2170 CONTINUE
XINT(L l,L2,11) = XINT(L1,L3,11)

2180 VALUE(Ll,L2,l,3) = 0 
DO 2210 I * 1,2
DO 2200 J  = 1,10
DO 2190 K = 1,3
PAR(I,J,K) = 0 

2190 CONTINUE 
2200 CONTINUE 
2210 CONTINUE 

RETURN 
END
END SU BROUTINE PARA 

***********************************************************

S U B R O U T I N E  S E R I E S

SU BRO U TIN E S E R I E S  (Ll,L2,L3,L4)
REAL*8 VALUE(101 ,100 ,10 ,3),XINT(101,100,12)
REAL*8 ZVAL(1 3 0 ,5 ),XLIM(2 ) ,A(130)
REAL*8 F0, F I, GO, G1, XL 
INTEGER Ll,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCL1,NE 
COMMON/ PARA1/XINT,VALUE 
COMMON/ PARA2/ ZVAL 
COMMON/PARA3/A

SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY 
DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE 
POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X) .

THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE 
CONVOLUTION.

THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA. 

K = 0

DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION 
BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.
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DO 3010 I = 1,12
I F ((XINT(L3, L4, I ) .LE. 0 ) .AND.(I .GT. 1)) GO TO 3020
DO 3000 J = 1,12
I F ((XINT(L l, L2, J ) .LE. 0 ) .AND.(J .GT. 1)) NCLl == J-2
I F ((XINT(L l, L2, J ) .LE. 0 ) .AND.(J .GT. 1)) GO TO 3010
K = K+l
A(K) = XINT(L I, L2, J )+XINT(L3,L4, I )

3000 CONTINUE 
3010 CONTINUE 
3020 NINT = 1-2 

NCL = K-l

DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X) 
DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES 
CREATED BY COMBINING F(X) AND G(T-X). DO 3100 IS CONTROLLED 
BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS 
ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY 
CLASS IN BOTH DISTRIBUTIONS.

CALL SORT (NCL)
DO 3120 K = 1,NCL1 
DO 3110 I = 1,NCL 
DO 3100 J = 1,NINT 
IK = 0

THIS IF  STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE 
INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K 
BEING CONTROLLED BY DO 3120.

IF ((A (I) .GE. XINT(LI, L2,K)+XINT(L3, L 4 ,J)—0.001) .AND. (A(I+1) 
&.LE. XINT(Ll,L2,K+l)+XINT(L3,L4,J+l)+0.001)) IK =* J  

IF (IK .GE. 1) GO TO 3030 
GO TO 3100 

3030 ISEL(l) = 0 
ISEL(2) = 0

THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE 
UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER 
THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL 
IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.

IF (XINT(L1,L2,K) .GE. (A(1+1)-XINT(L3,L4,J+l)-0 .001)) GO TO 3040 
XLIM(l) = XINT(L3,L4,J+l)
ISEL(l) = 999 
GO TO 3050 

3040 XLIM(l) = XINT(L I, L2,K)
3050 IF (XINT(L1,L2,K+1) .LE. (A(I)-XINT(L3,L4,J)+0.001)) GO TO 3060 

XLIM(2) = XINT(L3,L4,J)
ISEL(2) = 999 
GO TO 3070 

3060 XLIM(2) = XINT(LI,L2,K+l)
3070 CONTINUE

DO 3090 NE = 1,2 
F0 = VALUE(L I, L2, K,1)
FI = VALUE(L I, L2,K,2)
GO = VALUE(L3, L4, IK,1)
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G1 = VALUE(L3, L4, IK,2)
XL =  X L IM (N E )
Z = 1.0
I F  (N E .E Q .  1) Z = -1 .0  
I F  ( I S E L ( N E )  .E Q .  999) GO TO 3080

THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE 
LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS 
BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE 
SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT 
IS BEING EVALUATED.

ZVAL(1,1) « ZVAL(I,l)+((FO*GO*XL)+((Fl*GO*XL**2)/2.)
&+((-1.0*Fl*Gl*XL**3)/3.)+((-1.0*F0*Gl*XL**2)/2.))*Z 

ZVAL(I,2) * ZVAL(I,2)+(((Fl*Gl*XL**2)/2.)+(F0*Gl*XL))*Z 
ZVAL(1,3) = ZVAL(I,3)+((-1.0*F0*Gl)/2.) *Z 
GO TO 3090

T H IS  S E C T IO N  EVALUA TES THE CONVOLUTION IN TEG R A L FO R  L I M I T S .
IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE 
OF THE DIFFERENT POLYNOMIAL CREATED WHEN THE INTEGRATION 
INVOLVES LIMITS IN THE FORM OF (T-X).

3080 ZVAL(I,1) = ZVAL(I,l)+((-1.0*FO*GO*XL)+((Fl*GO*XL**2)/2.)
&+((Fl*Gl*XL**3)/3.)+ ( ( -1 .0*F0*G1*XL**2) / 2 . ) ) *Z 

ZVAL(I,2) = ZVAL(I,2)+(( -1 .0*F1*G0*XL)+(F0*G0)- 
&((Fl*Gl*XL**2)/2.) )*Z 

ZVAL(1,3) = ZVAL(I,3)+((F1*G0)/2.)*Z 
ZVAL(I,4) = ZVAL(I,4)+((Fl*Gl)/6.)*Z 

3090 CONTINUE 
3100 CONTINUE 
3110 CONTINUE 
3120 CONTINUE

LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE CONVOLUTION 
RESULTS WITH THE B(0) AND B(l) FORM IN EACH OF 10 CLASSES.

VALUE(L1,L2,1,3) = 99.
CALL LINEAR(L l, L2,NCL)
RETURN
END
END SUBROUTINE SERIES

S U B R O U T I N E  P L O T

SUBROUTINE PLOT (IPRINT,KBL,KBM,I FLAG)
REAL*8 XX(100 ,2 ),SORT 
CHARACTER*1 KBL,KBM,LINE(101)
INTEGER I , IFLAG,IPRINT,J,JPLOT,K,NN 
COMMON/PARA4/XX

PLOT IS USED TO CREATE THE HISTOGRAM FOR FINAL OUTPUT.
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n THE VARIABLE SORT IN THIS SUBROUTINE IS NOT RELATED TO 
THE SUBROUTINE SORT.

SORT = XX(1,2)
DO 4000 I  * 2 , IPRINT
IF (SORT .LE. XX(I,2)) SORT = XX(I,2)

4000 CONTINUE
PRINT 4900
IF ( IFLAG .EQ. 0) THEN
PRINT 4910
ELSE
PRINT 4915 
END IF
IF (SORT .GT. 0.5) PRINT 4920
IF ((SORT .GT. 0 .2 5 ).AND.(SORT .LE. 0.50)) PRINT 4930
IF ((SORT .GT. 0 .1 0 ).AND.(SORT .LE. 0.25)) PRINT 4940
IF ((SORT .GT. 0 .0 5 ).AND.(SORT .LE. 0.10)) PRINT 4950
IF (SORT .LE. 0.05) PRINT 4960 
PRINT 4970 
DO 4030 I  = 1 ,IPRINT
DO 4010 J  = 1,51
LINE(J) = KBL 

4010 CONTINUE
IF (SORT .GT. 0.5) JPLOT = (INT((XX(I,2 )*50 .)+0.5))+1 
IF ((SORT .GT. 0 .2 5 ).AND.(SORT .LE. 0.50))

&JPLOT = ( INT((XX(1,2)*100.)+0.5 ) )+l 
IF ((SORT .GT. 0 .1 0 ).AND.(SORT .LE. 0.25))

&JPLOT = ( INT((XX(I,2)*200.)+ 0 .5 ))+l 
IF ((SORT .GT. 0 .0 5 ).AND.(SORT .LE. 0.10))

&JPLOT = ( INT((XX(I,2)*500.)+ 0 .5 ))+l 
IF (SORT .LE. 0.05) JPLOT = ( INT((XX(I,2)*1000.0)+0.5 ) )+l 
IF (JPLOT .LE. 0) JPLOT = 1 
IF (JPLOT .GT. 51) JPLOT = 51 
DO 4020 NN = 1 ,JPLOT 
LINE(NN) = KBM 

4020 CONTINUE
PRINT 4980,XX( 1 ,1 ) , (LINE(K), K = 1,JPLOT)

4030 CONTINUE

FORMAT STATEMENTS

4900 FORMAT (lH l)
4910 FORMAT (15X,' PROBABILITY DENSITY FUNCTION' / / )
4915 FORMAT (15X, ' SIMULATION FREQUENCY HISTOGRAM' / / )
4920 FORMAT (9X ,'0 .20 .40 .60 .80 1.0
4930 FORMAT (9X,'0 .10 .20 .30 .40 .50
4940 FORMAT (9X,'0 .05 .10 .15 .20 .25
4950 FORMAT (9X ,10 .02 .04 .06 .08 .10
4960 FORMAT (9X,’0 .01 .02 .03 .04 .05
4970 FORMAT (9X, 'I-------+------x---- --- 1— — I --- — I --- . _ + ------1 •
4980 FORMAT (IX,F8 •3,2X,51A1)

RETURN
END
END SUBROUTINE PLOT
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S U B R O U T I N E  L I N E A R

SUBROUTINE LINEAR (Ll,L2,NCL)
REAL*8 VALUE(101,100,10,3),XINT(101,10Q,12),ZVAL(130,5),A(130) 
REAL*8 Q,Q1,Q2,STD,SUMX,SUMY,SUMXY,SUMSQ 
REAL*8 ALPHA,AREA,BETA,FACT,SIZE,W,X,XLMBDA,XMEAN 
REAL*8 XMODE, XSIZE, Y 
INTEGER Ll,L2 
COMMON/PARA1 /XINT,VALUE 
COMMON/PARA2/ ZVAL 
COMMON/PARA3/A 
EXTERNAL DGAMMA

SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA 
FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH 
THE B(O) AND B(l) FORM IN EACH OF 10 CLASSES THROUGH THE USE 
OF SIMPLE LINEAR REGRESSION.

XMODE = VALUE(L l, L2,2 ,3 )
XMEAN = VALUE(L l, L2,2 ,3 )
STD = ( (VALUE(L1,L2,2,3)-XINT(L1,L2,1))/3.)
XLMBDA = VALUE(L1,L2,2 ,3 )-XINT(L1,L2,1)
ALPHA = VALUE(L l, L2,2 , 3)
BETA = VALUE(L1,L2,3,3)
SIZE = (XINT(L l,L2,2 ) -XINT(L l, L2,1 )) /1 0 .
IF ( IDINT(VALUE(L l,L2,1 ,3 ))  .EQ. 99) SIZE = (A(NCL+1)-A(1 ) ) /1 0 . 
XINT(L1,L2,11) = XINT(L1,L2,2)
IF ( IDINT(VALUE(L l,L2,1 ,3 ))  .EQ. 99) XINT(L1,L2,11) = A(NCL+1)
X = XINT(L l, L2,1)
IF (IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 99) X= A( 1 )
DO 5000 I = 1,10 
XINT(Ll,L2, I ) = X 
X = X+SIZE 

5000 CONTINUE
DO 5050 I  = 1,10 
X = XINT(Ll,L2 , 1)
SUMY = 0.
SUMX = 0.
SUMXY = 0.
SUMSQ = 0.

W CONTROLS THE NUMBER OF DATA POINTS USED IN THE REGRESSION 
COMPUTATIONS.

W = 10.+IDINT(SIZE*3.)
XSIZE = SIZE/W 
LASTJ = IDINT(W)
DO 5040 J  = 1 ,LASTJ
IF ( IDINT(VALUE(Ll,L2,1 ,3 ))  .NE. 99) GO TO 5030 
DO 5010 K3 = 1,NCL 
K = 0
IF ((X .GE. A(K3)) .AND.(X .LE. A(K3+1))) K = K3 
IF (K .GE. 1) GO TO 5020
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5010 CONTINUE
SERIES OR PARA GENERATED DISTRIBUTIONS.

5020 Y = ZVAL(K,1) + (ZVAL(K,2)*X) + (ZVAL(K,3)*(X**2 ) )
S+(ZVAL(K,4)*(X**3))

5030 CONTINUE

TRIANGULAR DISTRIBUTION.

IF ( IDINT(VALUE(L l, L2,1 ,3 ))  .EQ. 1) THEN
IF (XINT(L l, L2, 1) .LE. X .AND. X .LE. XMODE) THEN
Y = (2 .* (X-XINT(Ll, L2, 1 ) ) ) / ( (XMODE-XINT(Ll,L2,1 ))*  10 .‘ SIZE) 
ELSE
Y = (2 .* (XINT(L1, L2,1 1 )-X)) / ( (XINT(L1,L2,1 1 )-XMODE)*10.‘SIZE) 
END IF

NORMAL DISTRIBUTION.

ELSE IF ( IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 2) THEN
Y = (1 ./(STD*2.506628275))*(DEXP(( - 1 .0 ) * ( ( (X-XMEAN)/STD)**2)/2 .) )  

EXPONENTIAL DISTRIBUTION (SHIFTED).

ELSE IF (IDINT(VALUE (L l,L 2,1 ,3 ))  .EQ. 3) THEN
Y = ( 1 . /XLMBDA)*(DEXP((-1 .0 )* ((X-XINT( L l , L2,1 ) ) /XLMBDA)))

GAMMA DISTRIBUTION.

ELSE IF (IDINT(VALUE(Ll,L2,1 ,3 ))  .EQ. 4) THEN
Y = (1 . /  (DGAMMA( ALPHA) * (BETA**ALPHA)) ) *DEXP( -X/BETA) * (X** (ALPHA-1 . 

*)>

BETA DISTRIBUTION.

ELSE IF ( IDINT(VALUE (L l,L 2,1 ,3 ))  .EQ. 5) THEN
Y = (DGAMMA(ALPHA+BETA) / ( DGAMMA(ALPHA) *DGAMMA(BETA)) ) *

&( 1 . / ( 1 0 .*SIZE)**(ALPHA+BETA-2•))*
&((X—XINT(Ll,L2, 1))**(ALPHA-1 .))*
&((XINT(L1,L2,11)-X)**(BETA-1.) )
END IF
IF (Y .LT. 0) Y = 0 
SUMX = SUMX+X 
SUMY = SUMY+Y 
SUMXY = SUMXY+(X*Y)
SUMSQ = SUMSQ+(X**2)
X = X+XSIZE 

5040 CONTINUE
VALUE (L l, L2,1 ,2 ) = (SUMXY-( (SUMX*SUMY)/W) ) /  (SUMSQ-( (SUMX**2) /W) ) 
VALUE(L1,L2,1,1) = ( SUMY/W)-(VALUE(Ll,L2 , 1,2 ) * (SUMX/W) )

5050 CONTINUE

DO 5060 CALCULATES THE AREA UNDER THE APPROXIMATED DISTRIBUTION.
AN ADJUSTMENT FACTOR FOR THE AMOUNT THAT THIS AREA HAS BEEN 
UNDERESTIMATED OR OVERESTIMATED IS THEREBY DETERMINED.
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DO 5060 I = 1,10
Q -  XXNT(L1, L2,1+1)-XINT(L1,L2, I )
Q1 = (XINT(Ll,L2,I) *VALUE(Ll,L2,I,2 ) )+VALUE(Ll,L2, I , 1)
Q2 = (XINT (III ,L2,1+1) * VALUE (Ll ,L 2 ,1,2) )+VALUE(Ll,L2,1,1)
IF (Q1 .LT. 0 .)  VALUE(L l,L 2,1 ,1 ) ■= VALUE(L l,L 2 ,I,1 )+ (Q 1 * (-1 .0 ))
IF ( Q2 .LT. 0 .)  VALUE(L l, L2,1 ,1 ) = VALUE(L l,L 2 ,I,1 )+ (Q 2*(-1 .0 ))
IF (Q1 .LT. 0 .)  Q1 = 0.
IF (Q2 .LT. 0 .)  Q2 = 0.
AREA = AREA+((Q1+Q2) *Q*0.5)

5060 CONTINUE
FACT = 1 .0 /AREA

DO 5070 ADJUSTS THE COEFFICIENTS OF ALL THE LINEAR POLYNOMIAL 
PIECES BY THE FACTOR COMPUTED IN DO 5060 IN ORDER TO NORMALIZE 
THE AREA BACK TO ONE. THIS ACTS TO REDUCE ACCUMULATING ERRORS 
DURING PROGRAM COMPUTATIONS.

DO 5070 I = 1,10
VALUE(L1,L2,1,1) = VALUE(L l,L2,1 ,1 ) ‘FACT 
VALUE(L1,L2,1,2) = VALUE(Ll,L2,1 ,2 ) ‘FACT 

5070 CONTINUE 
AREA = 0
DO 5080 I  = 1,130 
A( I ) = 0
ZVAL (1,1) = 0 
ZVAL (1,2) = 0 
ZVAL(1,3) = 0 
ZVAL (1,4) = 0 

5080 CONTINUE 
RETURN 
END
END SUBROUTINE LINEAR

S U B R O U T I N E  S O R T

SUBROUTINE SORT (NCL)
REAL*8 A(130),B 
INTEGER NCL 
INTEGER I,K1 
COMMON/PARA3/A

SUBROUTINE SORT IS USED TO CONDUCT AN ALGEBRAIC SORT OF DATA 
CREATED IN THE SERIES AND PARA SUBROUTINES.

6000 K1 = 0
DO 6010 I = 1 ,NCL
IF ( ( A (I) .LT. (A(1+1) + .01 ) ) .AND.(A( I) .GT. (A(1+1)-.01))) 

&GO TO 6020 
IF (A (I) .LT. A(1+1)) GO TO 6010 
IF (A (I) .GT. A(1+1)) B = A (I)
A (I) = A(1+1)
A( 1+1) = B
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K1=K1+1 
6010 CONTINUE

IF (Kl .GE. 1) GO TO 6000 
GO TO 6040 

6020 NCL = NCL-1
LASTJ = NCL+1 
DO 6030 J  = I,LASTJ 
A(J) = A (J+ l)
A( J + l) = 0 

6030 CONTINUE
GO TO 6000 

6040 RETURN 
END
END SUBROUTINE SORT

S U B R O U T I N E  S I M U L T

SUBROUTINE SIMULT (N,NSIM)
REAL*8 XINT(101,100,12),VALUE(101,100,10,3)
REAL*8 T(100,99),SIMT(100,10000)
REAL*8 ALPHA,BETA,X,XLNGTH, XLMBDA, XMAX, XMEAN, XMIN, XMODE 
REAL*8 RN, STD,TTEMP, TMAX 
DIMENSION NET(100,103)
INTEGER ISIM,N,NDIST,NSIM 
COMMON/ PARA1/XINT,VALUE 
COMMON/ PARA5/NET 
COMMON/PARA6/SIMT
EXTERNAL DRNUN, DRNNOR, DRNEXP, DRNGAM, DRNBET,RNSET

DO 7130 GENERATES A SIMULATED NETWORK THROUGHPUT FOR EACH OF 
NSIM ITERATIONS OF THE MONTE CARLO SIMULATION OF THE NETWORK.

DO 7130 ISIM=1,NSIM

DO 7080 GENERATES A RANDOM VALUE FROM THE ACTIVITY RESOURCE 
CONSUMPTION (ACTIVITY TIME) DISTRIBUTION OF EACH ACTIVITY.

DO 7080 1=1,N-l 
DO 7070 J=1,NET(I,103)
NDIST * IDINT(VALUE(I,J,1,3))
XMIN = XINT(I, J , 1)
XMAX = XINT(I, J , 11)
XLNGTH = XMAX-XMIN
GO TO (7010,7020,7030,7040,7050,7060) NDIST

TRIANGULAR DISTRIBUTION.

7010 CALL DRNUN(1 ,RN)
XMODE = VALUE(I , J , 2,3)
X = (XMODE-XMIN)/XLNGTH 
IF (RN .GT. X) GO TO 7015
T (I ,J )  = XMIN+DSQRT(RN*XLNGTH*(XMODE-XMIN))
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GO TO 7070
7015 T (I ,J )  = XNAX-DSQRT (XLNGTH * (XMAX-XMODE ) * (1. -RN) )

GO TO 7070

NORMAL DISTRIBUTION.

7020 CALL DRNNOR(l,RN)
XMEAN = VALUE(I , J , 2 ,3)
STD = (XMEAN-XMIN)/3 .
T (I ,J )  = (RN*STD)+XMEAN
IF ( (T( I ,  J) .LT. XMIN) .OR. (T (I ,J )  .GT. XMAX)) GO TO 7020 
GO TO 7070

EXPONENTIAL DISTRIBUTION.

7030 CALL DRNEXP(1,RN)
XLMBDA = VALUE(I , J , 2 ,3 ) -XMIN 
T (I, J) = (XLMBDA*RN)+XMIN 
IF (T (I ,J )  .GT. XMAX) GO TO 7030 
GO TO 7070

GAMMA DISTRIBUTION.

7040 ALPHA = VALUE(I,J,2,3)
BETA = VALUE(I,J,3,3)
CALL DRNGAM(1,ALPHA,RN)
T (I, J) = BETA*RN
IF (T (I ,J )  .GT. XMAX) GO TO 7040
GO TO 7070

BETA DISTRIBUTION.

7050 ALPHA = VALUE(I , J , 2,3)
BETA = VALUE(I,J,3,3)
CALL DRNBET(1 ,ALPHA,BETA,RN)
T (I, J) = XMIN+(XLNGTH*RN)
GO TO 7070

UNIFORM DISTRIBUTION.

7060 CALL DRNUN(1 ,RN)
T (I, J) = XMIN+(XLNGTH*RN)

7070 CONTINUE 
7080 CONTINUE

DO 7120 GENERATES THE CRITICAL PATH TO EACH NODE. THE 
SIMULATED TIME THROUGH NODE I FROM SIMULATION ITERATION L 
IS STORED IN SIMT(I,L).

SIMT(1 ,ISIM) = 0.0 
DO 7120 1=2,N 
TMAX = 0 . 0

DO 7110 DETERMINES THE STARTING NODES AND THE ACTIVITIES WHICH 
TERMINATE AT NODE I  > STARTING NODES, AND COMPUTES THE SIMULATED 
THROUGHPUT VALUE THROUGH NODE I  AS THE MAXIMUM OF THE
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[(THROUGHPUT VALUE THROUGH STARTING NODE) + 
(ACTIVITY VALUE FROM STARTING NODE TO NODE I ) ] .

DO 7110 J = l ,1-1 
DO 7100 J1=2,NET(J,103)+l 
IF (N E T(J,Jl)-I) 7100,7090,7100 

7090 TTEMP ~ SIMT(J,ISIM)+T(J,Jl-1)
IF (TTEMP .LT. TMAX) GO TO 7100 
TMAX = TTEMP 

7100 CONTINUE 
7110 CONTINUE

SIMT(I, ISIM) ■ TMAX 
7120 CONTINUE 
7130 CONTINUE 

RETURN 
END
END SUBROUTINE SIMULT

S U B R O U T I N E  G E N R A N

SU BROUTINE GENRAN ( N , N A C T S )
DIMENSION NET(100,103) ,NAF(99),NBE(99)
REAL*4 DEN,DL,DN,DN2, DN3,UP,X,Y,Yl
INTEGER I,IJ,J,K,KX,L,N,NI,NO,NN,NACTS,NARCS,NDEL,NDIFF,NFREE,NEM, 

& NRC
COMMON/PARA5/NET 
EXTERNAL RNUN

THIS SUBROUTINE GENERATES A RANDOM ACYCLIC, DIRECTED ACTIVITY 
NETWORK WITH N NODES AND NACTS ACTIVITIES WITH THE METHOD OF 
DEMEULEMEESTER, DODIN AND HERROELEN (1993).

DO 8010 I = 1,100 
DO 8000 J  = 1,103 
NET(I,J) = 0 

8000 CONTINUE
NET(I,101) = 1 

8010 CONTINUE

COMPUTE NUMBER OF ACTIVITIES TO DELETE WITH THE DELETION METHOD.

L = N*(N-l)/2 
NDEL = L-NACTS

COMPUTE NDIFF SUCH THAT
INITIAL NUMBER OF FREE ACTIVITIES = NACTS -  NDIFF 

FOR THE ADDITION METHOD.

NDIFF = (2*N)-4 
DN = REAL(N)
DL = (REAL(L)/2.0 )+ l.0 
DN2 = DN*(DN-1.0)
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DN3 = DN+0.5
IF [N (N -l)/4]+ l < OR = NACTS, CHOOSE THE DELETION METHOD.
IF [N (N -l)/4]+ l > NACTS, CHOOSE THE ADDITION METHOD.

IF (DL-NACTS) 8020,8020,8110

THE DELETION METHOD.

8020 DO 8040 I  = 1,N-1 
NET(I,1) = I 
DO 8030 J  * I+1,N 
NET(I,J) * J  

8030 CONTINUE
NET(I,102) = 1-1 
NET(I,103) = N—I 

8040 CONTINUE
NET(N,1) = N 
NET(N,102) = N-l

DO 8100 DELETES NDEL RANDOMLY SELECTED ACTIVITIES.

8050 DO 8100 I  = 1 ,NDEL

CHECK THAT THERE IS AT LEAST ONE ACTIVITY FEASIBLE FOR 
ACTIVITY DELETION. IF NOT, RESTART NETWORK GENERATION.

DO 8055 J  = 1 ,N-1 
NO » J
IF (NET(NO, 103) .LT. 2) GO TO 8055 
DO 8054 K = NO+1,N
IF (NET(K,102) .GE. 2 .AND. NET(NO,K) .EQ. K) GO TO 8060

8054 CONTINUE
8055 CONTINUE 

GO TO 8000

RANDOMLY SELECT THE STARTING NODE (NO) OF THE ACTIVITY TO BE 
DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.

8060 CALL RNUN(1 ,Y)
Y1 -  (Y*DN2)+0.25 
X = DN3-SQRT(Y1)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
IF (NET(NO,103) .LT. 2) GO TO 8060

RANDOMLY SELECT THE ENDING NODE (NI) OF THE ACTIVITY TO BE 
DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.

K = 0
DO 8070 J  = NO+1,N 
IF (NET(J,102) .LT. 2) GO TO 8070 
IF (NET(NO,J) .EQ. 0) GO TO 8070 
K = K+l 
NAF(K) = J  

8070 CONTINUE
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IF (K .EQ. 0) GO TO 8060 
DEN = 1.0/REAL(K)
CALL RNUN(1,X )
DO 8080 J = 1,K 
UP = DEN*REAL(J)
IF (X .GT. UP) GO TO 8080 
NI = NAF(J)
GO TO 8090 

8080 CONTINUE
C
C DELETE THE ACTIVITY FROM NODE NO TO NODE NI.
C
8090 NET(NO,NI) = 0

NET (NO, 103) =* NET (NO, 103) -1 
NET(NI,102) = NET(NI,102)-1 

8100 CONTINUE
GO TO 8250

C
C THE ADDITION METHOD.
C
8110 DO 8120 I = 1,N 

NET(I,1) = I 
8120 CONTINUE

C
C INITIALIZE NUMBER OF NONRECEIVING NODES (NRC) AND NUMBER OF
C NONEMITTING NODES (NEM).
C

NRC = N-3 
NEM = N-3

C
C ADD ACTIVITIES FROM NODE 1 TO NODE 2 AND FROM NODE N-l TO NODE N.
C

NET(1,2) = 2 
NET(N-l,N) = N 
NET(1,103) = 1 
NET(2,102) = 1 
NET(N-1,103) = 1 
NET(N,102) = 1

C
C INITIALIZE NUMBER OF ACTIVITIES ADDED SO FAR (NARCS).
C

NARCS = 2
C
C IF INITIAL NUMBER OF FREE ACTIVITIES
C [NACTS - (2N-4) = NACTS - NDIFF] IS < OR = 0,
C THEN ALL NACTS ACTIVITIES TO BE ADDED ARE SUBJECT TO FEASIBILITY
C CONDITIONS AND CANNOT BE RANDOMLY SELECTED.
C

IF (NDIFF .GE. NACTS) GO TO 8170
C
C SET FLAG <KK = 0) THAT INITIAL NUMBER OF FREE ACTIVITIES IS > 0.
C

KK = 0
C
C RANDOMLY SELECT THE START NODE (NO) OF THE ACTIVITY TO BE ADDED
C FROM AMONG THE FEASIBLE NODES.
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c
8130 CALL RNUN(1,Y)

Y1 = (Y*DN2)+0.25 
X = DN3-SQRT(Y1)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NN * N-NO
IF (NET(NO,103) .GE. NN) GO TO 8130
RANDOMLY SELECT THE END NODE (NI) OF THE ACTIVITY TO BE ADDED 
FROM AMONG THE FEASIBLE NODES.
K = 0
DO 8140 J = NO+1,N 
IF (NET(N0,J) .NE. 0) GO TO 8140 
K = K+l 
NAF(K) = J 

8140 CONTINUE
DEN = 1.0/REAL(K)
CALL RNUN(1,X)
UP = 0.0 
DO 8150 J = 1,K 
UP = UP+DEN
IF (X .GT. UP) GO TO 8150 
NI = NAF(J)
GO TO 8160 

8150 CONTINUE
ADD THE ACTIVITY FROM NODE NO TO NODE NI.

8160 NET(NO,NI) = NI 
NARCS = NARCS+1
IF (NET(N0,103) .EQ. 0) NEM = NEM-1 
IF (NET(NI,102) .EQ. 0) NRC = NRC-1 
NET(NO,103) = NET(NO,103)+1 
NET(NI,102) = NET(NI,102)+l
IF

NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS > OR =
NUMBER OF ACTIVITIES REQUIRED (NACTS),

THEN THE NETWORK I S  CO M PLETE.

IF (NARCS .GE. NACTS) GO TO 8250
IF THE FLAG (KK) INDICATES THAT

NUMBER OF NONRECEIVING NODES (NRC) = 0, AND 
NUMBER OF NONEMITTING NODES (NEM) = 0, I.E.

FEASIBILITY REQUIREMENTS ARE MET, THEN THE REMAINING ACTIVITIES
TO BE ADDED ARE FREE ACTIVITIES AND ARE TO BE RANDOMLY SELECTED.
IF (KK .EQ. 1) GO TO 8130
IF

NUMBER OF FREE ACTIVITIES (NFREE) IS > 0,
THEN THE NEXT A C T IV IT Y  TO BE ADDED I S  A  FR EE A C T IV IT Y  AND I S  TO  BE 
RANDOMLY SE L E C T E D .
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c
NFREE =  N A C TS-N A R C S-N R C -N EM  
I F  (N F R E E  .G T .  0) GO TO 8130
IF

NUMBER OF FR E E  A C T I V I T I E S  (N F R E E ) - 0, AND 
NUMBER OF N O N R E C EIV IN G  NODES (N R C ) - 0,

THEN CHECK THE NUMBER OF NONEMITTING NODES (NEM).
8170 IF (NRC .EQ. 0) GO TO 8200

IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONRECEIVING 
NODES (NRC) TO 0.
K = 0
DO 8180 I = 3,N-l 
IF (NET(I,102) .GT. 0) GO TO 8180 
K = K+l 
NAF(K) = I 

8180 CONTINUE
IF (K .EQ. 0) GO TO 8200 
DO 8190 I =1,K 
IJ = K+l—I 
NI = NAF(IJ)
CALL RNUN( 1 , Y )
X = 1.0+(REAL(NI-l)*Y)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NET(NO,NI) = NI 
NARCS = NARCS+1 
NET(NO,103) = NET(NO,103)+l 
NET(NI,102) = NET(NI,102)+l 

8190 CONTINUE
IF

NUMBER OF NONEMITTING NODES (NEM) = 0,
THEN THE FEASIBILITY REQUIREMENTS ARE MET.

8200 IF (NEM .EQ. 0) GO TO 8230
IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONEMITTING 
NODES (NEM) TO 0.
K = 0
DO 8210 I = 2,N-2 
IF (NET(I,103) .GT. 0) GO TO 8210 
K = K+l 
NBE(K) = I 

8210 CONTINUE
IF (K .EQ. 0) GO TO 8230 
DO 8220 I = 1,K 
NO « NBE(I)
CALL RNUN( 1 , X )
Y = REAL(NO+1)+(REAL(N—NO)*X)
NI = INT(Y)
IF (NI .GT. Y) NI = NI—1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

420

NET(NO,NI) = MI 
NARCS “ NARCS+1 
NET (NO, 103) =■ NET (NO, 103)+1 
NET(NI,102) = NET(NI,102)+1 

8220 CONTINUE
C
C SET FLAG (KK * 1) THAT FEASIBILITY REQUIREMENTS HAVE BEEN MET.
C
8230 KK = 1

C
C IF NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS
C < NUMBER OF ACTIVITIES REQUIRED (NACTS), THEN RANDOMLY SELECT
C THE NEXT ACTIVITY TO BE ADDED,
C = NACTS, THEN THE NETWORK IS COMPLETE,
C > NACTS, THEN USE THE DELETION METHOD TO DELETE EXCESS
C ACTIVITIES.
C

IF (NARCS-NACTS) 8130,8250,8240 
8240 NDEL = NARCS-NACTS 

GO TO 8050
C
C RECONFIGURE NET ARRAY.
C
8250 DO 8270 I = 1,N-1 

K = 2
DO 8260 J = 1+1,N
IF (NET(I,J) .EQ. 0) GO TO 8260
NET(I,K) = NET(I,J)
IF (K .LT. J) NET(I,J) = 0 
K = K+l 

8260 CONTINUE 
8270 CONTINUE 

RETURN 
END

C END SUBROUTINE GENRAN
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C S U B R O U T I N E  C P U T I M E
C
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
SUBROUTINE CPUTIME(CPTIME)
REAL*4 CPTIME 
TYPE TB_TYPE 

SEQUENCE
REAL*4 USRTIME 
REAL*4 SYSTIME 

END TYPE
TYPE (TB_TYPE) DTIME_SRC 
CPTIME = DTIME_(DTIME_SRC)
RETURN
END

C END SUBROUTINE CPUTIME
C
Q  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
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S U B R O U T I N E  T I M E R

SUBROUTINE TIMER( DELTA) 
REAL* 4 DELTA,CPU2 
CALL CPUTIME (CPU2)
DELTA =  C PU 2
RETURN
END

C END SUBROUTINE TIMER
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c 
c
C  V A L ID A T IO N  V E R SIO N
C  O F
C  POLYGONAL A PPR O X IM A TIO N  AND R EDUCTION TECHNIQUE
C  (P A R T )
C ALGORITHM
C TO APPROXIMATE CRITICALITY INDICES
C OF
C ACTIVITIES AND NODES
C AND
C TO IDENTIFY THE K MOST
C STOCHASTICALLY DOMINATING PATHS
C OF
C ACYCLIC, DIRECTED NETWORKS
C USING
C "SEQUENTIAL APPROXIMATION" METHOD
C 
C
C THIS PROGRAM GENERATES "STRONGLY RANDOMIZED NETWORKS," APPROXI-
C MATES THE CRITICALITY INDICES OF THEIR ACTIVITIES AND NODES, AND
C IDENTIFIES THEIR K MOST STOCHASTICALLY DOMINATING PATHS WITH THE
C PART ALGORITHM USING "SEQUENTIAL APPROXIMATION," SIMULATES THEM,
C AND OUTPUTS STATISTICAL COMPARISONS OF THE PART-APPROXIMATED
C AND SIMULATED INDICES AND CRITICAL PATH SETS. THE PROGRAM IS
C WRITTEN IN FORTRAN 77 AND IS PRESENTLY DESIGNED TO BE OPERATED IN
C A TIME SHARING MODE WITH ALL DATA INPUT FROM TWO (2) DATA FILES.
C THE PROGRAM DIRECTS OUTPUT TO A TIME SHARING TERMINAL. IF
DESIRED,
C IF DESIRED, THE READ STATEMENTS AT THE BEGINNING OF THE MAIN PRO-
C GRAM CAN BE MODIFIED TO ALLOW DATA INPUT DIRECTLY FROM THE TIME
C SHARING TERMINAL.
C
C THE CURRENT DIMENSIONS OF THE PROGRAM ALLOW A NETWORK WITH A
C MAXIMUM OF 100 NODES AND A MAXIMUM OF 99 ACTIVITIES BEGINNING
C AT EACH NODE. THESE LIMITS CAN BE EXPANDED BY CHANGING THE
C DIMENSIONS OF THE XINT AND VALUE ARRAYS.
C
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C  O P E R A T I N G  I N S T R U C T I O N S
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C INSTRUCTIONS FOR BUILDING DATA FILES
C  -----------------------------------------------------------------------------------
C
C DATA F I L E  DATAH .  PA TH S-R N E T G E N
C
C THIS DATA FILE CONTAINS DESCRIPTIONS OF THE PRECODED DISTRIBUTIONS
C OF ACTIVITY DURATION.
C
C THERE ARE 5 FIELDS OF DATA.
C FIELD 1 IS THE CODE FOR THE TYPE OF DISTRIBUTION.
C 1 = TRIANGULAR DISTRIBUTION
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C 2 = NORMAL DISTRIBUTION
C 3 = EXPONENTIAL DISTRIBUTION
C 4 = GAMMA DISTRIBUTION
C 5 = BETA DISTRIBUTION
C 6 = UNIFORM DISTRIBUTION
C FIELD 2 IS
C MODE FOR A TRIANGULAR DISTRIBUTION.
C MEAN FOR A NORMAL DISTRIBUTION.
C MEAN FOR AN EXPONENTIAL DISTRIBUTION.
C ALPHA FOR A GAMMA OR A BETA DISTRIBUTION.
C 1/(B-A) FOR A UNIFORM DISTRIBUTION.
C FIELD 3 IS BETA FOR A GAMMA OR A BETA DISTRIBUTION.
C FIELD 4 IS THE MINIMUM VALUE OF THE DISTRIBUTION.
C FIELD 5 IS THE MAXIMUM VALUE OF THE DISTRIBUTION.
C
C
C DATA FILE CONTROL.PATHS-RNETGEN
C
C THIS IS A SINGLE LINE DATA FILE WHICH CONTAINS CONTROL
C PARAMETERS FOR INPUT, OUTPUT, AND MONTE CARLO SIMULATION.
C
C THERE ARE 6 FIELDS OF DATA.
C FIELD 1 IS THE NUMBER OF NETWORKS TO BE GENERATED.
C FIELD 2 IS THE NUMBER OF NODES IN THE NETWORK.
C 0 = NUMBER OF NODES IS TO BE RANDOMLY GENERATED.
C FIELD 3 IS THE NUMBER OF ACTIVITIES IN THE NETWORK.
C 0 = NUMBER OF ACTIVITIES IS TO BE RANDOMLY GENERATED.
C FIELD 4 IS THE DESIRED NUMBER OF PATHS IN THE SET OF K-MOST
C STOCHASTICALLY DOMINATING PATHS (MAXIMUM =5).
C FIELD 5 IS THE NUMBER OF ITERATIONS OF THE MONTE CARLO
C SIMULATION REQUESTED.
C 0 = NO MONTE CARLO SIMULATION IS REQUESTED.
C FIELD 6 IS THE NUMBER OF PRECODED DISTRIBUTIONS (MAXIMUM =20).
C
C
C NOTE
C
C ALL UNUSED FIELDS MUST BE ZEROED OUT.
C
C
C
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C M A I N  P R O G R A M
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
REAL*8 XINT( 104,500,12),VALUE(104,500,10,3),A(130),
* ZVAL(130,5),DIST(20,5),
* CRTA(100,99),CRTNA(100,99),CRTN(100),
* CRTAS(100,99),CRTNAS(100,99),
* X,XSIZE
REAL*4 AMEAN,ASTD,RN,STEP,UP,XT,DELTA,TOTTIM
REAL * 8 CONST, CRTNN, CUMCRT, RELERR, RELMAX, PR1 GE 2 , TEMPA, TEMPS
INTEGER I, II, IACT, ICODED, ICOUNT, IENODE , I FLAG, IPATH, IPRE, ISEED,
* ISNODE,
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J , J l , J 2 , J J ,
K,KK,KOUNT,
L ,  L l ,  L 2  ,  L 3 , LASTK, L A , LPATH ,
MM,
N ,  NACTS ,  N C L , NCODED ,  NET ,  NGEN ,  NGENCT ,  N P A , N PPA ,
NPATH, N P A T H S, NSIM  ,  N SS ,  N A C TSS ,  N S T A R T ,
UA

D IM E N SIO N  N E T ( 1 0 0 , 1 0 3 ) , I P R E ( 1 0 0 , 9 9 , 2 ) , I P A T H ( 1 0 0 , 9 9 , 2 ) ,N P A T H (1 0 0 ) ,  
L P A T H ( 6 , 1 0 1 ) ,N P A ( 5 0 0 , 1 0 1 ) ,N P P A ( 1 0 0 , 5 )

C O M M O N /P A R A 1/X IN T , VALUE 
COMMON /P A R A 2  /  ZVAL 
CO M M O N /PA RA 3/A  
CO M M O N /PA R A 4/N ET 
C O M M O N /P A R A 5/IP R E  
COMMON/ PA R A 6/ C R T  A S , CRTNAS 
CO M M O N /PA R A 7/LPA TH  
C O M M O N /P A R A 8/N PA ,N P PA  
DATA N C L /0 / , T O T T IM /0 . 0 /
EX TERN A L RN S E T , RNNOR, RNUN

I N I T I A L I Z E  RANDOM NUMBER GENERATOR.

ISEED = 123456789 
CALL RNSET(ISEED)
OPEN INPUT AND OUTPUT FILES
OPEN (UNIT = 12, FILE = 'datah.paths-rnetgen’ )
OPEN (UNIT = 13, FILE = ' control .paths-rnetgen')
READ CONTROL INFORMATION.
READ (13,1900) NGEN,N,NACTS,NPATHS,NSIM,NCODED 
NSTART = N 
NACTSS = NACTS
DO 0900 READS DISTRIBUTION DATA FROM DATAH.VAL AND LOADS IT 
INTO THE DIST ARRAY.
DO 0900 I = 1,NCODED
READ (12,1902) (DIST(I,J), J=l,5)

0900 CONTINUE
STEP = 1.0/REAL(NCODED)
DO 1540 GENERATES, ANALYZES, SIMULATES, AND STATISTICALLY 
COMPARES NGEN "STRONGLY RANDOMIZED NETWORKS."
DO 1540 NGENCT = 1,NGEN 
CALL TIMER(DELTA)
N = NSTART 
NACTS = NACTSS 
PRINT 1910
PRINT 1915,NGENCT,NGEN 
PRINT 1916
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RANDOMLY GENERATE THE NUMBER OF NODES (N), IF NECESSARY.
IF (N .GT. 0) GO TO 0910 
CALL RNUN(1,RN)
XT = 2.0+(99.0*RN)
N =  I N T ( X T )
IF (N .GT. 100) N = 100
RANDOMLY GENERATE THE NUMBER OF ACTIVITIES (NACTS), IF NECESSARY.

0910 IF (NACTS .GT. 0) GO TO 0920 
LA = N-l 
UA = N*(N-l)/2
AMEAN = ( (R E A L (L A + U A ) )/2.)-(( (R E A L ( U A -L A ) )**2)/500.0)
A STD = ( R E A L ( U A - L A ))/2.5 
CALL RNN OR( 1 , R N )
XT = (RN *ASTD)+AMEAN 
NACTS = INT(XT)
IF (NACTS .GT. UA) NACTS = UA
RANDOMLY GENERATE THE NETWORK (NET ARRAY).

0920 CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
CALL GENRAN(N,NACTS)
CALL T IM E R  (D E L T A )

DO 1025 RANDOMLY SELECTS ONE OF THE PRECODED DISTRIBUTIONS 
FOR EACH ACTIVITY AND LOADS THE DISTRIBUTION’S DATA INTO 
THE VALUE AND XINT ARRAYS. THIS DO ALSO DETERMINES IF 
THE ACTIVITY DISTRIBUTION IS OTHER THAN UNIFORM, AND,
IF SO, CALLS LINEAR TO APPROXIMATE IT WITH A 
PIECEWISE POLYGONAL FUNCTION.
DO 1025 I = 1,N-1 
Ll = I
DO 1020 J = 1,NET(I,103)
L2 = J
CALL RNUN(1, R N )
UP - 0.0
DO 1000 K = 1,NCODED 
UP = UP+STEP
IF (RN .GT. UP ) GO TO 1000 
ICODED = K 
GO TO 1010 

1000 CONTINUE
1010 VALUE(Ll,L2,1,3) = DIST(ICODED,1)

VALUE(Ll,L2,2,3) = DIST(ICODED,2)
VALUE(Ll,L2,3,3) = DIST(ICODED,3)
XINT(L1,L2,1) = DIST(ICODED,4)
XINT(L1,L2,2) = DIST(ICODED,5)
IF (IDINT(VALUE(Ll,L2,1,3)) .NE. 6) THEN 
CALL LINEAR(L1,L2,NCL)
GO TO 1020
DO 1015 CONVERTS DATA FOR UNIFORM DISTRIBUTIONS INTO A USABLE
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FORM FOR SUBROUTINES SERIES AND PARA.
ELSE
XINT(Ll,L2,11) = XINT(Ll,L2,2)
X = XINT(Ll,L2, 1)
XSIZE = (XINT(Ll,L2,2)-XINT(Ll,L2fl))/10.
DO 1015 K = 1,10
VALUE(Ll,L2 ,K, 1) = VALUE(Ll,L2,2,3)
VALUE(Ll,L2,K,2) = 0.0 
XINT(Ll,L2,K ) = X 
X = X-f XSIZE 

1015 CONTINUE 
END IF 

1020 CONTINUE 
1025 CONTINUE

ANALYSIS OF THE NETWORK BEGINS.
DO 1070 DETERMINES THE SET OF PREDECESSOR ACTIVITIES, I.E. THE 
STARTING NODE NUMBER AND THE ACTIVITY NUMBER OF EACH ACTIVITY

HICH
TERMINATES AT NODE I.
DO 1070 I = 2,N 
ICOUNT = 0 
DO 1060 J = 1,1-1 
IF (NET(J,101)) 1550,1060,1030 

1030 DO 1050 Jl = 2,NET(J,103)+l
IF (NET(J,J1) - I) 1050,1040,1050 

1040 ICOUNT = ICOUNT+1
IPRE(I,ICOUNT,1) = J 
IPRE(I,ICOUNT,2) = Jl-1 

1050 CONTINUE 
1060 CONTINUE 
1070 CONTINUE

DO 1220 DETERMINES THE DISTRIBUTION THROUGH EACH NODE IN THE 
FORWARD DIRECTION IN THE NETWORK.
DO 1220 I = 2,N
THROUGH 1220 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION 
THROUGH THE STARTING NODE OF THE ACTIVITY AND THE RESOURCE 
CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH TERMINATES 
AT NODE I AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
IF THE FIRST STARTING NODE = NODE 1, THE CONVOLUTION IS EQUAL TO 
THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE I.
IF (IPRE(1,1,1) .EQ. 1) THEN 
IACT = IPRE(I,1,2)
DO 1175 J = 1,10
XINT(101,1, J) = XINT(1,IACT,J )
VALUE(101,1,J,1) = VALUE(1,IACT,J,l)
VALUE(101,1,J,2) = VALUE(1,IACT,J ,2)

1175 CONTINUE
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XINT(101,1,11) - XINT(1,IACT,11)
C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE FIRST STARTING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
ISNODE = IPRE(1,1,1)
IACT = IPRE(1,1,2)
DO 1180 J = 1,10
XINT(101,1,J) » XINT(ISNODE,100,J)
VALUE(101,1,J,1) = VALUE(ISNODE,100,J,l)
VALUE ( 101,1,J,2) = VALUE(ISNODE,100,J,2)

1180 CONTINUE
XINT(101,1,11) = XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE FIRST ACTIVITY TERMINATING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1185 J = 1,10
XINT(101,2,J) = XINT(ISNODE,IACT,J)
VALUE(101,2,J,1) = VALUE(ISNODE,IACT,J,l)
VALUE(101,2,J,2) = VALUE(ISNODE,IACT,J,2)

1185 CONTINUE
XINT(101,2,11) = XINT(ISNODE,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
END IF 
CONTINUE

C
C IF THERE IS ONLY ONE ACTIVITY TERMINATING AT NODE I, THE
DISTRIBUTION
C THROUGH NODE I IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 100TH ACTIVITY POSITION OF NODE I.
C

IF (NET(I,102) .EQ. 1) THEN
DO 1190 J - 1,10
XINT(I,100,J) = XINT(101,1,J)
VALUE (1,100,J,1) = VALUE(101,1,J,1)
VALUE(I,100,J,2) = VALUE(101,1,J,2)

1190 CONTINUE
XINT(I,100,11) = XINT(101,1,11)

C
C IF THERE ARE TWO OR MORE ACTIVITIES TERMINATING AT NODE I, LOAD
THE
C DISTRIBUTION THROUGH THE STARTING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1205 K = 2,NET(I,102)
ISNODE =  I P R E ( I , K , 1 )
IACT = IPRE(I, K, 2)
DO 1195 J = 1,10
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XINT(101,3,J) = XINT(ISNODE,100,J)
VALUE(101,3,J,1) = VALUE(ISNODE, 100,J,1)
VALUE(101,3,J,2) = VALUE(ISNODE,100,J,2)

1195 CONTINUE
XINT(101,3,11) = XINT(ISNODE,100,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1200 J = 1,10
XINT(101,4,J) = XINT( ISNODE,IACT,J)
VALUE(101,4,J,1) = VALUE(ISNODE,IACT,J,l)
VALUE(101,4,J,2) = VALUE(ISNODE,IACT,J,2)

1200 CONTINUE
XINT(101,4,11) = XINT(ISNODE,IACT,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

CALL PARA(101,1,3)
1205 CONTINUE

C
C THE FORWARD DISTRIBUTION THROUGH NODE I IS THE MAXIMUM IN
TEMPORARY
C LOCATION 1. LOAD THIS INTO THE 100TH ACTIVITY POSITION OF NODE I.
C

DO 1210 J = 1,10
XINT(I,100,J) = XINT(101,1,J)
VALUE(I,100,J,1) = VALUE(101,1,J, 1)
VALUE(I,100,J,2) = VALUE(101,1,J,2)

1210 CONTINUE
XINT(I,100,11) = XINT(101,1,11)
END IF 

1220 CONTINUE
C
C DO 1270 DETERMINES THE DISTRIBUTION THROUGH EACH NODE IN THE
C BACKWARD DIRECTION IN THE NETWORK.
C

DO 1270 I = N-l,1,-1
C
C THROUGH 1270 CONVOLVES THE RESOURCE CONSUMPTION DISTRIBUTION
C THROUGH THE ENDING NODE OF THE ACTIVITY AND THE RESOURCE
C CONSUMPTION DISTRIBUTION OF EACH ACTIVITY WHICH STARTS
C AT NODE I AND THEN FINDS THE MAXIMUM OF THESE CONVOLUTIONS.
C
C IF THE LAST ENDING NODE = NODE N, THE CONVOLUTION IS EQUAL TO
C THE DISTRIBUTION OF THE ACTIVITY WHICH TERMINATES AT NODE N.
C

IACT = NET(1,103)
IENODE = NET(I,IACT+1)
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IF (IENODE .EQ. N) THEN
DO 1225 J = 1,10
XINT(101,1,J) - XINT(I,IACT,J)
VALUE(101,1,J,1) = VALUE(I,IACT,J,1)
VALUE(101,1,J,2) - VALUE(I,IACT,J,2)

1225 CONTINUE
XINT(101,1,11) = XINT(I,IACT,11)

C
C OTHERWISE, LOAD THE DISTRIBUTION THROUGH THE LAST ENDING NODE
C INTO TEMPORARY LOCATION 1.
C

ELSE
DO 1230 J * 1,10
XINT(101,1, J) = XINT(IENODE,101,J)
VALUE(101,1,J,1) = VALUE(IENODE, 101,i7,l)
VALUE(101,1,J,2) = VALUE(IENODE,101,J,2)

1230 CONTINUE
XINT(101,1,11) = XINT(IENODE,101,11)

C
C LOAD THE DISTRIBUTION OF THE LAST ACTIVITY STARTING AT NODE I
C IN TEMPORARY LOCATION 2.
C

DO 1235 J = 1,10
XINT(101,2, J) = XINT(I,IACT,J)
VALUE(101,2,J,1) = VALUE(I,IACT,J,1)
VALUE(101,2, J,2) = VALUE(I,IACT,J,2)

1235 CONTINUE
XINT(101,2,11) = XINT(I,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
C PLACE THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
END IF 
CONTINUE

C
C IF THERE IS ONLY ONE ACTIVITY STARTING AT NODE I, THE DISTRIBUTION
C THROUGH NODE I IS THE CONVOLUTION IN TEMPORARY LOCATION 1. LOAD
THIS
C INTO THE 101ST ACTIVITY POSITION OF NODE I.
C

IF (NET(I,103) .EQ. 1) THEN
DO 1240 J =« 1,10
XINT(I,101,J) * XINT(101,1,J)
VALUE(I,101,J,1) = VALUE(101,1,J,1)
VALUE(I,101,J,2) = VALUE(101,1,J,2)

1240 CONTINUE
XINT(1,101,11) = XINT(101,1,11)

C
C IF THERE ARE TWO OR MORE ACTIVITIES STARTING AT NODE I, LOAD THE
C DISTRIBUTION THROUGH THE ENDING NODE OF THE NEXT ACTIVITY INTO
C TEMPORARY LOCATION 3.
C

ELSE
DO 1255 K = NET(I,103)-l,l,-l 
IACT = K
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IENODE = NET(I,IACT)+1 
DO 1245 J = 1,10
XINT(101,3,J) - XINT(IENODE,101,J)
VALUE(101,3,J,1) = VALUE(IENODE,101,J,l)
VALUE(101,3,J,2) = VALUE(IENODE,101,J,2)

1245 CONTINUE
XINT(101,3,11) = XINT(IENODE,101,11)

C
C THEN LOAD THE DISTRIBUTION OF THE NEXT ACTIVITY INTO TEMPORARY
C LOCATION 4.
C

DO 1250 J = 1,10
XINT(101,4,J) = XINT(I,IACT,J)
VALUE(101,4,J,1) = VALUE(I,IACT,J,1)
VALUE(101,4,J,2) = VALUE(I,IACT,J,2)

1250 CONTINUE
XINT(101,4,11) = XINT(I,IACT,11)

C
C CONVOLUTE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 3 AND 4 AND
C LOAD THE CONVOLUTION INTO TEMPORARY LOCATION 3.
C

CALL SERIES(101,3,101,4)
C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 3
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
C

CALL PARA(101,1,3)
1255 CONTINUE

C
C THE BACKWARD DISTRIBUTION THROUGH NODE I IS THE MAXIMUM IN
TEMPORARY
C LOCATION 1. LOAD THIS INTO THE 101ST ACTIVITY POSITION OF NODE I.
C

DO 1260 J = 1,10
XINT(I,101,J) = XINT(101,1,J)
VALUE(1,101, J, 1) = VALUE(101,1,J,1)
VALUE(1,101,J,2) = VALUE(101,1,J,2)

1260 CONTINUE
XINT(I,101,11) = XINT(101,1,11)
END IF 

1270 CONTINUE
C
C DO 1275 INITIALIZES THE CRITICALITY INDICES OF THE NODES (CRTN) .
C

DO 1275 I = 1,N 
CRTN(I) =0 .0 

1275 CONTINUE
C
C THROUGH 1415 CALCULATES THE CRITICALITY INDICES OF ALL THE
C ACTIVITIES AND NODES IN THE NETWORK.
C

DO 1415 I = N,2,-l 
IF (I .NE. N) GO TO 1280 
NPATH(I) = NET(I,102)
KK = 1
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NSS * NET(I,102)
GO TO 1295

C
C AT NODE I, THE NUMBER OF PATHS TO BE CONSIDERED IS;
C (NUMBER OF PATHS CONSIDERED AT NODE (1+1) )
C + (IN-DEGREE OF NODE I) - (OUT-DEGREE OF NODE I).
C
1280 NPATH(I) = NPATH(1+1)+NET(I,102)-NET(I,103)

NSS = NPATH(1+1)
K * 0

C
C DO 1290 SHIFTS TO NODE I ALL THE PATHS CONSIDERED AT NODE (1+1)
C EXCEPT THOSE PATHS WHOSE PREDECESSOR ACTIVITIES START AT NODE I.
C

DO 1290 JJ = 1/NSS 
ISNODE = IPATH(1+1,JJ,1)
IACT = IPATH(1+1,JJ,2)
IF (ISNODE .EQ. I) GO TO 1290 
K = K+l
IPATH(I,K,1) = ISNODE
IPATH(I,K,2) = IACT
DO 1285 J = 1,10
XINT(102,K,J) = XINT(102,JJ,J)
VALUE(102,K,J,1) = VALUE(102,JJ,J,1)
VALUE(102,K,J,2) = VALUE(102,JJ,J,2)

1285 CONTINUE
XINT(102,K,11) = XINT(102,JJ,11)

1290 CONTINUE 
KK = K+l 
NSS = NPATH(I)

1295 CONTINUE
C
C DO 1320 DETERMINES THE DISTRIBUTIONS OF ALL PATHS WHICH INCLUDE
THE
C (IN-DEGREE - OF - NODE I) PREDECESSOR ACTIVITIES OF NODE I.
C

DO 1320 J = KK,NSS 
JJ = J-KK+1
IPATH(I,J,1) = IPRE(I,JJ,1)
IPATH(I,J,2) = IPRE(I,JJ,2)

C
C LOAD THE FORWARD DISTRIBUTION THROUGH THE STARTING NODE OF THE
JJth
C PREDECESSOR ACTIVITY OF NODE I INTO TEMPORARY LOCATION 1.
C

ISNODE = IPATH(I,J,1)
IACT = IPATH(I,J,2)
DO 1300 K = 1,10
XINT(101,1,K) = XINT(ISNODE,100,K)
VALUE(101,1,K,1) = VALUE(ISNODE,100,K,1)
VALUE(101,1,K,2) = VALUE(ISNODE,100,K,2)

1300 CONTINUE
XINT(101,1,11) = XINT(ISNODE,100,11)

C
C LOAD THE DISTRIBUTION OF THE JJth PREDECESSOR ACTIVITY OF NODE I
C INTO TEMPORARY LOCATION 2.
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c
DO 1305 K = 1,10
XINT(101,2,K) = XINT(ISNODE,IACT,K)
VALUE(101,2,K,1) = VALUE(ISNODE,IACT, K,l)
VALUE(101,2,K,2) = VALUE(ISNODE,IACT,K,2)

1305 CONTINUE
XINT(101,2,11) = XINT(ISNODE,IACT,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND 
PLACE
C THE CONVOLUTION IN TEMPORARY LOCATION 1.
C
C IF THE STARTING NODE OF THE JJth PREDECESSOR ACTIVITY OF NODE I IS
C THE STARTING NODE OF THE NETWORK, NODE 1, THE CONVOLUTION IS THE
C DISTRIBUTION OF THE JJth PREDECESSOR ACTIVITY.
C

IF (ISNODE .EQ.l) THEN
DO 1306 K = 1,10
XINT(101,1,K) = XINT(101,2,K)
VALUE(101,1,K,1) = VALUE(101,2,K,l)
VALUE(101,1,K,2) = VALUE(101,2,K,2)

1306 CONTINUE
XZNT(101,1,11) = XINT(101,2,11)
ELSE
CALL SERIES(101,1,101,2)
END IF 
CONTINUE
IF (I .EQ. N) GO TO 1311

C
C LOAD THE BACKWARD DISTRIBUTION THROUGH NODE I, THE ENDING NODE OF
C THE JJth PREDECESSOR ACTIVITY TO NODE I, INTO TEMPORARY LOCATION
2 .
C

DO 1310 K = 1,10 
XINT(101,2,K) = XINT(I,101,K)
VALUE(101,2,K,1) = VALUE(I,101,K,1)
VALUE(101,2,K,2) = VALUE(I,101,K,2)

1310 CONTINUE
XINT(101,2,11) = XINT(I,101,11)

C
C CONVOLVE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2 AND
PLACE
C THE CONVOLUTION IN TEMPORARY LOCATION 1.
C

CALL SERIES(101,1,101,2)
C
C THE CONVOLUTION IS THE DISTRIBUTION OF ALL PATHS WHICH INCLUDE THE
C JJth PREDECESSOR ACTIVITY OF NODE I. LOAD THIS DISTRIBUTION INTO
THE
C Jth ACTIVITY POSITION OF NODE 102.
C
1311 DO 1315 K = 1,10

XINT(102,J,K) = XINT(101,1,K)
VALUE(102,J,K,1) = VALUE(101,1,K,1)
VALUE(102,J,K,2) = VALUE(101,1,K,2)

1315 CONTINUE
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XINT(102,J,11) = XINT(101,1,11)
1320 CONTINUE

IF (NET(I,102) .EQ. 1) GO TO 1390
C
C TO 1360 DETERMINES THE MAXIMUM OF THE DISTRIBUTIONS OF ALL THE
C PATHS CONSIDERED AT NODE (1+1) EXCEPT THOSE PATHS WHOSE
PREDECESSOR
C ACTIVITIES START AT NODE I. DO 1290 SHIFTED THESE PATHS TO NODE
I.
C

IFLAG - 0
IF (NPATH(I)-NET(I,102)-1) 1325,1335,1345

C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C = NUMBER OF PREDECESSOR ACTIVITIES OF NODE I,
C THE MAXIMUM IS THE 0 DISTRIBUTION. SET A FLAG (I FLAG =1).
C
1325 IFLAG = 1

GO TO 1360
C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C = (NUMBER OF PREDECESSOR ACTIVITIES OF NODE I) + 1 ,
C THE MAXIMUM IS THE DISTRIBUTION OF THE ONE PATH WHOSE PREDECESSOR
C ACTIVITY DOES NOT START AT NODE I. LOAD THIS DISTRIBUTION INTO
C TEMPORARY LOCATION 3.
C
1335 DO 1340 K = 1,10

XINT(101,3,K) = XINT(102,1,K)
VALUE(101,3,K,1) = VALUE(102,1,K,1)
VALUE(101,3,K,2) = VALUE(102,1,K,2)

1340 CONTINUE
XINT(101,3,11) = XINT(102,1,11)
GO TO 1360

C
C IF
C NUMBER OF PATHS CONSIDERED AT NODE (1+1)
C > (NUMBER OF PREDECESSOR ACTIVITIES OF NODE I) + 1 ,
C THERE ARE TWO OR MORE PATHS WHOSE PREDECESSOR ACTIVITIES DO NOT
START
C AT NODE I. DO 1350 DETERMINES THE MAXIMUM OF THE DISTRIBUTIONS OF
C THESE PATHS.
C
C DO 1347 LOADS THE 1st PATH WHOSE PREDECESSOR ACTIVITIES DO NOT
START
C AT NODE I INTO TEMPORARY LOCATION 4.
C
1345 DO 1347 K = 1,10

XINT(101,4,K) = XINT(102,1,K)
VALUE(101,4,K,1) = VALUE(102,1,K,1)
VALUE(101,4,K,2) = VALUE(102,1,K,2)

1347 CONTINUE
XINT(101,4,11) = XINT(102,1,11)
DO 1350 K = 2,NPATH(I)-NET(I,102)
CALI. PARA( 102,1,K)
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1 3 5 0  CONTINUE
C
C LOAD THIS MAXIMUM DISTRIBUTION INTO TEMPORARY LOCATION 3.
C

DO 1355 K = 1,10 
XINT(101,3,K) = XINT(102,1,K)
VALUE(101,3,K,1) = VALUE(102,1,K,1)
VALUE(101,3,K,2) - VALUE(102,1,K,2)

1355 CONTINUE
XINT(101,3,11) = XINT(102, 1,11)

C
C RELOAD THE 1st PATH WHOSE PREDECESSOR ACTIVITIES DO NOT START AT
C NODE I BACK INTO THE 1st ACTIVITY POSITION OF NODE 102.
C

DO 1357 K = 1,10
XINT(102,1,K) = XINT(101,4,K)
VALUE(102,1,K,1) = VALUE(101,4,K,l)
VALUE(102,1,K,2) = VALUE(101,4,K,2)

1357 CONTINUE
XINT(102,1,11) = XINT(101,4,11)

C
C DO 1380 DETERMINES
C P(ALL PATHS WHICH INCLUDE THE Jth PREDECESSOR ACTIVITY >
C ALL OTHER PATHS)
C FOR EACH PREDECESSOR ACTIVITY (IACT) OF NODE I. THIS PROBABILITY
C IS THE CRITICALITY INDEX OF THE ACTIVITY (CRTA( I, IACT) ) .
C
1360 DO 1380 J = NPATH (I) -NET( 1,102)+l,NPATH (I)

C
C LOAD THE MAXIMUM DISTRIBUTION OF ALL PATHS WHOSE PREDECESSOR
C ACTIVITIES DO NOT START AT NODE I INTO TEMPORARY LOCATION 1.
C

DO 1365 K = 1,10
XINT(101,1,K) = XINT(101, 3,K)
VALUE(101,1,K,1) = VALUE(101,3,K,1)
VALUE(101,1,K,2) = VALUE(101,3,K,2)

1365 CONTINUE
XINT(101,1,11) = XINT(101,3,11)
DO 1375 K * NPATH(I)-NET(1,102) + l,NPATH(I)
IF (K .EQ. J) GO TO 1375

C
C LOAD THE DISTRIBUTIONS OF ALL PATHS WHICH INCLUDE THE Kth
PREDECES-
C SOR ACTIVITY OF NODE I INTO TEMPORARY LOCATION 2, WHERE K IS DIF-
C FERENT FROM J.
C

DO 1370 KK = 1,10
XINT(101,2,KK) = XINT(102,K,KK)
VALUE (101,2 ,KK, 1) = VALUE (102 ,K,KK, 1)
VALUE(101,2,KK, 2 ) = VALUE (102 ,K,KK, 2 )

1370 CONTINUE
XINT(101,2,11) = XINT(102,K,11)

C
C PARALLEL-REDUCE THE DISTRIBUTIONS IN TEMPORARY LOCATIONS 1 AND 2
AND
C LOAD THE MAXIMUM INTO TEMPORARY LOCATION 1.
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IF THE MAXIMUM DISTRIBUTION OF ALL PATHS WHOSE PREDECESSOR ACTIVI
TIES DO NOT START AT NODE I IS THE 0 DISTRIBUTION, THE PARALLEL- 
REDUCTION WITH THE DISTRIBUTION OF ALL PATHS WHICH INCLUDE THE 1st 
PREDECESSOR ACTIVITY OF NODE I IS THE DISTRIBUTION OF THE LATTER.
IF ((K .EQ. NPATH (I) —NET( 1,102 )+l) .AND. (I FLAG .EQ. 1)) THEN
DO 1372 KK = 1,10
XINT(101,1,KK) = XINT(101,2, KK)
VALUE(101,1,KK,1) = VALUE(101,2,KK, 1)
VALUE(101,1,KK,2) = VALUE(101,2,KK,2)

1372 CONTINUE
XINT(101,1,11) = XINT(101,2,11)
ELSE
CALL PARA(101,1,2)
END IF 

1375 CONTINUE
CALL COMPAR(102,J,101,1,PR1GE2)
IACT = J-(NPATH(I)—NET(1,102) )
CRTA( I,IACT) = PR1GE2 

1380 CONTINUE
THROUGH 1410 COMPUTES NORMALIZED CRITICALITY INDICES OF THE Jth 
PREDECESSOR ACTIVITIES OF NODE I (CRTNA(I,J)) AND THE CRITICALITY 
INDEX OF NODE I (CRTN(I)).
IF (I .NE. N) GO TO 1400
CUMCRT =0 .0
DO 1385 J = 1,NET(N,102)
CUMCRT = CUMCRT + CRTA(I,J)

1385 CONTINUE
CRTN(N) = CUMCRT 
CONST = CUMCRT
IF (CONST .EQ. 0.0) CONST = 1.0 
GO TO 1400 

1390 IF (I .EQ. N) GO TO 1395 
CRTA(1,1) = CRTN(I)
CRTNA(1,1) = CRTA(1,1)/CONST 
GO TO 1400 

1395 CRTN(I) = 1.0
CRTA(1,1) = CRTN(I)
CRTNA(I,1) = CRTA(I,1)
CONST = 1.0 

1400 PRINT 1920,1 
PRINT 1925
DO 1405 J = 1,NET(I,102)
CRTNA(I,J) = CRTA(I,J)/CONST
PRINT 1930, IPRE( I, J, 1),CRTA( I, J) ,CRTNA(I,J)

1405 CONTINUE
DO 1410 J = 1,NET(I,102)
ISNODE = IPRE(I,J,1)
CRTN(ISNODE) = CRTN(ISNODE)+CRTA(I,J)

1410 CONTINUE 
1415 CONTINUE

DO 1420 COMPUTES NORMALIZED CRITICALITY INDICES OF THE NODES
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C (CRTNN).
C

PRINT 1935 
DO 1420 I = 1,N 
CRTNN * CRTN(I)/CONST 
PRINT 1930,I,CRTN(I),CRTNN 

1420 CONTINUE
C
C MONTE CARLO SIMULATION OF THE NETWORK.
C

IF (NSIM .EQ. 0) GO TO 1540 
CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
CALL SIMULC(N ,NSIM,NPATHS)
CALL TIMER(DELTA)

C
C COMPUTE THE NUMBER OF OTHER ACTIVITIES WHICH HAVE LARGER
CRITICALITY
C INDICES THAN EACH ACTIVITY AND THE RELATIVE ERROR OF EACH ACTIVITY
C CRITICALITY INDEX.
C

PRINT 1910
PRINT 1940
RELMAX = 0.0
DO 1490 I = N,2,-1
DO 1480 J = 1,NET(I,102)
K = 0 
KK = 0
ISNODE = IPRE(I,J,1)
TEMPA = CRTA (I, J)
TEMPS = CRTAS(I, J)
DO 1470 II = N,2,-1 
DO 1460 JJ = l,NET(IIf102)
IF ((CRTA(II,JJ)-TEMPA) .GT. 1.0D-06) GO TO 1430 
GO TO 1440 

1430 K = K+l
1440 IF ((CRTAS( II,JJ)-TEMPS) .GT. 1.0D-06) GOTO 1450 

GO TO 1460 
1450 KK = KK+1 
1460 CONTINUE 
1470 CONTINUE

IF ((CRTNAS(I,J ) .EQ. 0.0) .AND. (CRTNA(I,J) .EQ. 0.0)) THEN
RELERR =0.0
ELSE
RELERR = ((CRTNA(I,J)-CRTNAS (I,J))/CRTNAS(I, J ))*100.0 
END IF
IF ( (DABS(RELERR) .GT. DABS(RELMAX) ) .AND. (CRTNAS(I, J) .NE. 0.0))

* RELMAX = RELERR
IF ((CRTNAS(I,J ) .EQ. 0.0) .AND. (CRTNA(I,J) .NE. 0.0)) THEN 
PRINT 1944,ISNODE,I,CRTA(I,J),CRTAS(I,J),CRTNA(I,J),CRTNAS(I, J) ,
* K,KK 
ELSE
PRINT 1945,ISNODE,I,CRTA(I,J),CRTAS(I,J),CRTNA(I,J),CRTNAS(I, J) ,
* K,KK,RELERR 
END IF
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1480 CONTINUE 
1490 CONTINUE

PRINT 1950, RELMAX
C
C DETERMINE THE NPATHS MOST STOCHASTICALLY DOMINATING PATHS THROUGH
THE
C NETWORK.
C

CALL DOMPTH(N,NPATHS)
PRINT 1960
DO 1500 K = 1,NPATHS
PRINT 1970,K,LPATH(K, 101) , (LPATH(K,KK),KK = 1 ,LPATH(K, 101) )

1500 CONTINUE
PRINT 1980

C
C DO 1530 COUNTS THE NUMBER OF NODES IN COMMON BETWEEN THE Kth MOST
C STOCHASTICALLY DOMINATING PATH AND THE SIMULATION-APPROXIMATED Kth
MOST
C CRITICAL PATH.
C

DO 1530 K = 1,NPATHS 
KOUNT = 0 
JJ = NPPA(N,K)
DO 1520 I = 1,LPATH(K,101)
DO 1510 J = 2,NPA(JJ,1)+1 
IF (LPATH(K ,I) .NE. NPA(JJ,J)) GO TO 1510 
KOUNT = KOUNT+1 
GO TO 1520 

1510 CONTINUE 
1520 CONTINUE

PRINT 1990,K,NPA(JJ,1),LPATH(K,101),KOUNT 
1530 CONTINUE 
1540 CONTINUE

CALL TIMER(DELTA)
TOTTIM = TOTTIM+DELTA 
PRINT 1996,TOTTIM 
STOP 

1550 PRINT 1995 
STOP

C
C FORMAT STATEMENTS
C
1900 FORMAT (2(13,IX),14,IX,II,IX,15,IX,12)
1901 FORMAT (3(12,25(IX,12)/),12,21(IX,12),IX,II,2(IX,12) )
1902 FORMAT (FI.0,4(IX,F8.2))
1910 FORMAT (1H1)
1915 FORMAT (IX, 'THE RESULTS FOR NETWORK NUMBER ',13,' OF ',13,

&' NETWORKS GENERATED ARE:' //)
1916 FORMAT (IX, 'FROM THE POLYGONAL APPROXIMATION AND REDUCTION ',

&'TECHNIQUE:')
1920 FORMAT (/ IX,'THE ACTIVITIES ENDING AT NODE ',13,' AND THEIR ',

&'CRITICALITY INDICES ARE:')
1925 FORMAT (IX,24X,'NORMALIZED'/

& IX,'STARTING',2X,'CRITICALITY',2X,'CRITICALITY'/
& IX,2X,'NODE',7X,'INDEX',8X,'INDEX')

1930 FORMAT (IX,2X,13,7X,F7.5,6X,F7.5)
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1935 FORMAT (/ IX,'THE CRITICALITY INDICES OF THE NODES ARE:’/
& IX,23X,'NORMALIZED'/
& 1X,10X,'CRITICALITY',2X,'CRITICALITY'/
& IX,2X,'NODE',7X,’INDEX',8X,'INDEX')

1940 FORMAT (IX,'COMPARISONS OF ACTIVITY CRITICALITY INDICES:’//
& 1X,28X,'NORM.',3X,'NORM.' , 2X,'NO. ACTS.',IX,'NO. ACTS.',
& 3X,'RELATIVE'/
6 IX,12X,'CRIT.’,3X,'CRIT.’ , 3X,'CRIT.',3X,'CRIT.',3X,
& 'GREATER' ,3X, 'GREATER' ,5X, 'ERROR' /
& IX, 'START',2X,'END',2X,'INDEX',3X,'INDEX',3X,'INDEX',3X,
& 'INDEX',2X,'CRIT. IN.',IX,'CRIT. IN.',3X,'OF NORM.'/
& IX,IX,'NODE',IX,'NODE',IX, ’(APPR.)',2X,'(SIM.)',IX,
& '(APPR.)',2X,'(STM.)',2X,'(APPR.)’,4X,'(SIM.)',2X,
& 'CRIT. INDEX')

1944 FORMAT (IX, IX,13,3X, 13,4(1X,F7.5),2(4X,13,3X),2X,'UNDEFINED')
1945 FORMAT (IX, IX,13,3X, 13,4(IX,F7.5),2(4X,13,3X),2X,F7.2,'%')
1950 FORMAT (/ IX,'THE MAXIMUM (ABSOLUTE) RELATIVE ERROR OF'/

& IX,'NORMALIZED ACTIVITY CRITICALITY INDEX IS: ',
& F7 .2, ’ %' )

1960 FORMAT (/ IX,'FROM MONTE CARLO SIMULATION:')
1970 FORMAT(/ IX,'THE RANK ’,11,' APPROXIMATED CRITICAL PATH WITH ',

& 13,' NODES:'/
& (IX,2014/))

1980 FORMAT (// IX,'COMPARISONS OF PATHS:')
1990 FORMAT (/ IX,'RANK ',11,' PATHS:'/

& IX,3( 'NO. NODES 1,2X)/
& IX,IX,'(APPR.)',5X,'(SIM.)',3X,'IN COMMON'/
& IX,3(3X,13,5X))

1995 FORMAT (IX,'PROGRAM STOPPED’ / IX,'IMPROPER NODE NUMBER(S ) '
&,'ENCOUNTERED')

1996 FORMAT (// IX,'CPU TIME FOR PART PROCESSING IS ',F8.3,' SECONDS' 
&/ / )
END
END MAIN PROGRAM

S U B R O U T I N E  P A R A

SUBROUTINE PARA (L1,L2,L3)
REAL*8 VALUE(104,500,10,3),XINT(104,500,12)
REAL*8 XVAL,ZVAL(130,5),PAR(2,15,6),PACT,B(130)
REAL*4 Z
INTEGER L1,L2,L3,NV1,NV2 
INTEGER K4(2,30)
INTEGER I,IINT,N,NCL,J,K,K3,L6,LASTJ,LASTK 
COMMON/PARAl/XINT,VALUE 
COMMON/PARA2/ZVAL 
COMMON/PARA3/B
SUBROUTINE PARA IS USED TO REDUCE PARALLEL ARCS INTO A SINGLE 
EQUIVALENT ARC. IT FINDS THE MAX OPERATOR BY MULTIPLYING CAP 
F(X) AGAINST CAP G(X) OVER THE INTERVALS OF VALIDITY.
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NVl = 10 
NV2 = 10 
DO 2020 N = 1,2 
L6 = L2
IF (N .EQ. 2) L6 =■ L3 
FACT = 0
DO 2010 J = 1,10 
B(1) = XINT(Ll,L6,J)
DO 2000 CONVERTS EACH LINEAR POLYNOMIAL PIECE OF LITTLE F(X) 
INTO THE CORRESPONDING QUADRATIC POLYNOMIAL PIECE OF ITS 
CUMULATIVE DISTRIBUTION CAP F(X).
DO 2000 I = 1,2
XV AL * VALUE(LI,L6,J,I)
Z = FLOAT(I)
PAR(N,J,1+1) = XVAL/Z
PAR(N ,J,1) = PAR(N,J,l) + ((-1.0)*(XVAL/Z)*(B(1)**I) )
K4(N,J) = 1+1 

2000 CONTINUE
IF (J .GT. 1) PAR(N ,J,1) = PAR(N,J,1)+FACT
FACT = PAR(N, J, 1) + (PAR(N,J,2)*XINT(L1,L6,J+l)) + (PAR(N,J,3) 
fi *(XINT(LI,L6,J+l) * * 2 ))

2010 CONTINUE 
2020 CONTINUE

DO 2040 ASSIGNS INTERVAL BOUNDARY VALUES TO THE B ARRAY.
DO 2040 I = 1,22
IF (I .GT. 11) GO TO 2030
B(I) = XINT(LI,L2,I)
GO TO 2040 

2030 B(I) = XINT(L1,L3,1-11)
2040 CONTINUE 

NCL = 21 
CALL SORT(NCL)

C
C DO 2080 DETERMINES THE POINT AT WHICH THE DISTRIBUTION DOMAINS
C OF THE TWO ARCS BEING COMBINED OVERLAP. ONCE THIS POINT IS
C DETERMINED, THE B ARRAY IS ADJUSTED TO REFLECT THE OVERLAP
C (ALL VALUES LESS THAN THIS POINT OF FIRST OVERLAP NEED NOT BE
C CONSIDERED, BECAUSE ONE OF THE DISTRIBUTIONS EQUALS ZERO AT
C THESE VALUES). IF THE DOMAINS ARE DISJOINT OR OVERLAP AT ONLY.
C ONE BOUNDARY POINT, THE RESULT OF THE APPLICATION OF THE
C MAXIMUM OPERATOR IS JUST THE UNCHANGED APPROXIMATED PROBABILITY
C DENSITY FUNCTION OF THE DISTRIBUTION DEFINED ON THE HIGHER-
C VALUED DOMAIN. GO TO 2180 OR GO TO 2160 RETURNS THIS FUNCTION
C DIRECTLY WITHOUT FURTHER PROCESSING.
C

IINT = 0
LASTJ = NCL+1
DO 2080 J = 1,LASTJ
IF ((XINT(LI,L2,1) .GE. XINT(Ll,L3,1)-0.001) .AND. 
fi(XINT(Ll,L2,l) .LE. XINT(Ll,L3,1)+0.001)) G O T O  2080 
IF (IINT .GE. 1) GO TO 2060
IF (XINT(LI,L2,1) .LE. XINT(L1,L3,1)+0.001) GO TO 2050
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IF (XINT(Ll,L3,J+l) .GE. XINT(L1,L2,1)-0.001) IINT = J 
IF ((XINT(Ll,L3,J+l) .LE. 0.001)

&.OR. ((XINT(Ll,L2, 1) .GE. XINT(Ll,L3,J+l)-0.001)
St. AND. (XINT(L1,L2,1) .LE. XINT(L1,L3,J+l)+0.001)
&.AND. (XINT(Ll,L3,J+2) .LE. 0.001))) GO TO 2180 
GO TO 2080

2050 IF (XINT(L1,L2,J+l) .GE. XINT(Ll,L3,l)-0.001) IINT “ J 
IF ((XINT(L1,L2,J+1) .LE. 0.001)

&.OR. ((XINT(Ll,L3,1) .GE. XINT(Ll,L2, J+l)-0.001)
&.AND. (XINT(Ll,L3,l) .LE. XINT(L1,L2,J+l)+0.001) 
a.AND. (XINT(L1,L2,J+2) .LE. 0.001))) GO TO 2160 
GO TO 2080 

2060 LASTK = NCL-(IINT-l)
DO 2070 K = 1,LASTK 
B(K) ® B(K+IINT)
B(K+IINT) = 0 

2070 CONTINUE
GO TO 2090 

2080 CONTINUE 
2090 NCL = NCL-IINT

DO 2150 IS THE OUTER LOOP FOR THE PROCESS OF CREATING THE 
EQUIVALENT ARC. NCL IS THE NUMBER OF CLASSES INVOLVED 
BETWEEN THE TWO ARCS.
N1 = 0 
N2 = 0
DO 2150 I = 1f NCL 
DO 2110 J = 1,11
DO 2110 DETERMINES THE APPROPRIATE INTERVALS OF EACH DISTRIBUTION 
THAT ARE VALID FOR THE B(I) VALUE BEING CONSIDERED. N1 AND 
N2 ARE THE CONTROLS FOR UPPER AND LOWER ARCS RESPECTIVELY.
IF (N1 .GE. 1) GO TO 2100
IF (((B(I) .GE. XINT(L1,L2,J)-0.001) .AND. (B(I+1)

&.LE. XINT(L1,L2,J+1)+0.001)) .OR. (XINT(L1,L2,J+l) .LE. 0.001)) 
&N1 = J 

2100 CONTINUE
IF (N2 .GE. 1) GO TO 2110
IF (((B(I) .GE. XINT(L1,L3,J)-0.001) .AND. (B(I+1)

&.LE. XINT(L1,L3,J+l)+0.001)) .OR. (XINT(Ll,L3,J+l) .LE. 0.001)) 
&N2 = J 

2110 CONTINUE
IF (N2 .GT. NV2) K4(2,N2) = 1
IF (N1 .GT. NVl) K4(l,Nl) = 1
DO 2130 AND DO 2120 PERFORM THE POLYGONAL MULTIPLICATION FOR 
CAP F(X) AND CAP G(X).
LASTJ = K4(2,N2)
LASTK = K4(1,Nl)
DO 2130 J = 1,LASTJ 
DO 2120 K = 1,LASTK 
IF (N2 .GT. NV2) PAR(2,N2,J) = 1
IF (N1 .GT. NVl) PAR(1,N1,K) = 1
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K3 = J+K-l
ZVAL(I,K3) = ZVAL(I,K3)+(PAR(1,Nl,K)*PAR(2,N2,J))

2120 CONTINUE 
2130 CONTINUE

C
C DO 2140 OBTAINS THE FIRST DERIVATIVE OF THE RESULT OF THE
C MULTIPLICATION OF CAP F(X) AND CAP G(X) IN THE FORM OF A
C LITTLE H(X) FOR THAT PRODUCT.
C

DO 2140 J = 1,4
ZVAL(I,J) - ZVAL(I,J+l)*FLOAT(J )
ZVAL(I,J+1) * 0 

2140 CONTINUE 
Nl * 0 
N2 » 0 

2150 CONTINUE
C
C LINEAR IS CALLED TO PIECEWISE POLYGONAL IZE THE RESULTS OF THE
C PARALLEL REDUCTION WITH THE B(O) AND B(l) FORM IN EACH OF 10
C CLASSES.
C

VALUE(Ll,L2,1,3) = 99.
CALL LINEAR(Ll,L2,NCL)
GO TO 2180 

2160 DO 2170 I = 1,10
VALUE(Ll,L2,1,1) = VALUE(Ll,L3,I,1)
VALUE(Ll,L2,I,2) = VALUE(Ll,L3,1,2)
XINT(L1,L2,I ) = XINT(Ll,L3,I )

2170 CONTINUE
XINT(L1,L2,11) = XINT(L1,L3,11)

2180 VALUE(L1,L2,1,3) = 0 
DO 2210 I = 1,2 
DO 2200 J = 1,10 
DO 2190 K = 1,3 
PAR(I,J,K) = 0 

2190 CONTINUE 
2200 CONTINUE 
2210 CONTINUE 

RETURN 
END

C END SUBROUTINE PARA
CC ***************** ******************** **********************

c
C S U B R O U T I N E  S E R I E S
CC ************************************************************
c

SUBROUTINE SERIES (Ll,L2,L3,L4)
REAL*8 VALUE(104,500,10,3),XINT(104,500,12)
REAL*8 ZVAL(130,5),XLIM(2),A(130)
REAL*8 F0,Fl,GO,G1,XL 
INTEGER L1,L2,L3,L4 
INTEGER ISEL(2)
INTEGER I,IK,J,K,NCL,NCLl,NE 
COMMON/PARAl/XINT,VALUE
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COMMON/PARA2/ZVAL 
COMMON/PARA3/A
SUBROUTINE SERIES PERFORMS THE CONVOLUTION OF TWO PROBABILITY 
DISTRIBUTIONS BY INTEGRATING THE PRODUCT OF THEIR PIECEWISE 
POLYGONAL APPROXIMATIONS IN THE FORMS OF F(X) AND G(T-X) .
THIS SECTION DETERMINES THE INTERVALS OF VALIDITY FOR THE 
CONVOLUTION.
THE A ARRAY IS USED FOR THE SAME PURPOSE AS THE B ARRAY IN PARA. 
K = 0
DO 3010 CREATES ALL POSSIBLE INTERVALS OF THE NEW DISTRIBUTION 
BY ADDING THE INTERVALS OF THE TWO DISTRIBUTIONS BEING WORKED.
DO 3010 I = 1,12
IF ((XINT(L3,L4,I) .LE. 0).AND.(I .GT. 1)) G O T O  3020 
DO 3000 J = 1,12
IF ((XINT(L1,L2,J) .LE. 0).AND.(J .GT. 1)) NCLl = J-2 
IF ((XINT(L1,L2,J) .LE. 0).AND.(J .GT. 1)) G O T O  3010 
K = K+l
A(K) = XINT(Ll,L2,J)+XINT(L3,L4,I)

3000 CONTINUE 
3010 CONTINUE 
3020 NINT = 1-2 

NCL =* K—1
DO 3120 IS CONTROLLED BY THE NUMBER OF CLASSES IN THE F(X) 
DISTRIBUTION. DO 3110 IS CONTROLLED BY THE NUMBER OF CLASSES 
CREATED BY COMBINING F(X) AND G(T-X). DO 3100 IS CONTROLLED 
BY THE NUMBER OF CLASSES IN THE G(T-X) DISTRIBUTION. THIS 
ALLOWS THE EVALUATION OF ALL OF THE CREATED CLASSES FOR EVERY 
CLASS IN BOTH DISTRIBUTIONS.
CALL SORT(NCL)
DO 3120 K = 1,NCL1 
DO 3110 I = 1,NCL 
DO 3100 J = 1,NINT 
IK = 0
THIS IF STATEMENT DETERMINES WHICH INTERVALS ARE VALID FOR THE 
INTERVAL END POINT A(I) BEING EVALUATED AND FOR THE VALUE OF K 
BEING CONTROLLED BY DO 3120.
IF ((A( I) .GE. XINT(Ll,L2,K )+XINT(L3,L4,J)—0.001) .AND. (A(I+1) 

&.LE. XINT(Ll,L2,K+1)+XINT(L3,L4,J+l)+0.001)) IK = J 
IF (IK .GE. 1) GO TO 3030 
GO TO 3100 

3030 ISEL(l) = 0 
ISEL(2) = 0
THE IF STATEMENTS INVOLVING XLIM ARE USED TO DETERMINE THE 
UPPER AND LOWER LIMITS OF INTEGRATION. IT IS DETERMINED WHETHER 
THE LIMIT COMES FROM THE F(X) OR THE G(T-X) DISTRIBUTION. ISEL
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C IS USED TO DESIGNATE VALUES FROM THE G(T-X) DISTRIBUTION.
C

IF (XINT(L1,L2,K) .GE. (A(1+1)-XINT(L3,L4,J+l)-0.001)) GO TO 3040 
XLIM(l) * XINT(L3,L4,J+l)
ISEL(l) = 999 
GO TO 3050 

3040 XLIM(l) = XINT(Ll,L2,K )
3050 IF (XINT(Ll,L2,K+l) .LE. (A(I)-XINT(L3,L4,J)+0.001)) GO TO 3060 

XLIM(2) =* XINT(L3,L4,J)
ISEL(2) - 999 
GO TO 3070 

3060 XLIM(2) = XINT(Ll,L2,K+l)
3070 CONTINUE

DO 3090 NE = 1,2 
F0 = VALUE(Ll,L2,K, 1)
FI = VALUE(Ll,L2 ,K,2)
GO = VALUE(L3,L4, IK,1)
G1 = VALUE(L3,L4, IK,2)
XL = XLIM(NE)
Z = 1.0
IF (NE .EQ. 1) Z = -1.0 
IF (ISEL(NE) .EQ. 999) GO TO 3080

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL AT A FINITE
C LIMIT. THE INTEGRATION IS BROKEN DOWN INTO ITS COMPONENT PARTS
C BY THE POWER OF THE COEFFICIENT THAT RESULTS. Z CONTROLS THE
C SIGN OF THE INTEGRAL BASED ON WHETHER THE LOWER OR UPPER LIMIT
C IS BEING EVALUATED.
C

ZVAL(1,1) = ZVAL(I,l)+((FO*GO*XL)+((Fl*GO*XL**2)/2.)
&+((-1.0*Fl*Gl*XL**3)/3.)+((-1.0*FO*G1*XL**2)/2.))*Z 
ZVAL(1,2) = ZVAL(I,2)+(((Fl*Gl*XL**2)/2.)+(F0*Gl*XL))*Z 
ZVAL(1,3) = ZVAL(I,3)+((-1.0*FO*G1)/2.)*Z 
GO TO 3090

C
C THIS SECTION EVALUATES THE CONVOLUTION INTEGRAL FOR LIMITS.
C IN THE FORM OF (T-X) . THE FORMULAS ARE DIFFERENT BECAUSE
C OF THE DIFFERENT POLYNOMIAL CREATED WHEN THE INTEGRATION
C INVOLVES LIMITS IN THE FORM OF (T-X) .
C
3080 ZVAL(1,1) = ZVAL(I,l)+((-1.0*FO*GO*XL)+((Fl*GO*XL**2)/2.)

&+((Fl*Gl*XL**3)/3.)+((-1.0*F0*Gl*XL**2)/2.))*Z 
ZVAL(1,2) = ZVAL(I,2)+((-1.0*Fl*GO*XL)+(FO*GO)- 

&( (F1*G1*XL**2) /2. ) )*Z 
ZVAL(1,3) - ZVAL(I,3)+((F1*G0)/2.)*Z 
ZVAL(1,4) = ZVAL(I,4)+((F1*G1)/6.)*Z 

3090 CONTINUE 
3100 CONTINUE 
3110 CONTINUE 
3120 CONTINUE

C
C LINEAR IS CALLED TO PIECEWISE POLYGONALIZE THE CONVOLUTION
C RESULTS WITH THE B(0) AND B(l) FORM IN EACH OF 10 CLASSES.
C

VALUE(Ll,L2,1,3) = 99.
CALL LINEAR(L1,L2,NCL)
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RETURN
END
END SUBROUTINE SERIES

S U B R O U T I N E  L I N E A R

SUBROUTINE LINEAR (L1,L2,NCL)
REAL*8 VALUE(104,500,10,3),XINT(104,500,12),ZVAL(130,5),A(130)
REAL*8 Q,Q1,Q2,STD,SUMX,SUMY,SUMXY,SUHSQ
REAL*8 ALPHA,AREA,BETA,FACT,SIZE,W,XfXLMBDA,XMEAN
REAL*8 XMODE,XSIZE,Y
INTEGER Ll,L2
COMMON/PARA1/XINT,VALUE
COMMON/PARA2/ZVAL
COMMON/PARA3/A
EXTERNAL DGAMMA
SUBROUTINE LINEAR PIECEWISE POLYGONALIZES DISTRIBUTION DATA 
FROM THE MAIN PROGRAM AND SUBROUTINES PARA AND SERIES WITH 
THE B(O) AND B(l) FORM IN EACH OF 10 CLASSES THROUGH THE USE 
OF SIMPLE LINEAR REGRESSION.
XMODE = VALUE(L1,L2,2,3)
XMEAN = VALUE(L1,L2,2,3)
STD = ((VALUE(L1,L2,2,3)-XINT(L1,L2,1))/3.)
XLMBDA = VALUE(Ll,L2,2,3)-XINT(Ll,L2,1)
ALPHA = VALUE(Ll,L2,2,3)
BETA = VALUE(Ll,L2,3,3)
SIZE = (XINT(L1,L2,2)-XINT(L1,L2,1))/10.
IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 99) SIZE = (A(NCL+1)-A( 1))/10. 
XINT(Ll,L2,11) = XINT(L1,L2,2)
IF (IDINT(VALUE(L1,L2,1,3)) .EQ. 99) XINT(L1,L2,11) = A(NCL+1)
X = XINT(Ll,L2,1)
IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 99) X = A(l)
DO 5000 I = 1,10 
XINT(Ll,L2,I) - X 
X = X+SIZE 

5000 CONTINUE
DO 5050 I = 1,10 
X = XINT(Ll,L2,I)
SUMY = 0.
SUMX = 0.
SUMXY = 0.
SUMSQ = 0.
W CONTROLS THE NUMBER OF DATA POINTS USED IN THE REGRESSION 
COMPUTATIONS.
W = 10.+IDINT(SIZE*3.)
XSIZE = SIZE/W 
LASTJ = IDINT(W)
DO 5040 J = 1,LASTJ
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IF (IDINT(VALUE(Ll,L2,1,3)) .NE. 99) GO TO 5030 
DO 5010 K3 = 1/NCL 
K = 0
IF ((X .GE. A(K3)).AND.(X .LE. A(K3+1))) K = K3 
IF (K .GE. 1) GO TO 5020 

5010 CONTINUE
SERIES OR PARA GENERATED DISTRIBUTIONS.

5020 Y = ZVAL(K,1)+(ZVAL(K,2)*X)+(ZVAL(K,3)*(X**2))
6+(ZVAL(K,4)*(X**3))

5030 CONTINUE
TRIANGULAR DISTRIBUTION.
IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 1) THEN

IF (XINT(Ll,L2,1) .LE. X .AND. X .LE. XMODE) THEN
Y = (2.*(X-XINT(L1,L2»1)))/((XMODE-XINT(Ll,L2,1))*10.*SIZE)
E L S E
Y = (2.*(XINT(Ll,L2,11)-X))/((XINT(L1,L2,11)-XMODE)*10.*SIZE) 
END IF

NORMAL DISTRIBUTION.
ELSE IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 2) THEN
Y = (1./(STD*2.506628275))*(DEXP((-1.0)*(((X-XMEAN)/STD)**2)/2.)) 
EXPONENTIAL DISTRIBUTION (SHIFTED).
ELSE IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 3) THEN
Y = (1./XLMBDA)*(DEXP((-1.0)*((X-XINT( Ll ,L2,1))/XLMBDA)))
GAMMA DISTRIBUTION.
ELSE IF (IDINT(VALUE(Ll,L2,1,3)) .EQ. 4) THEN
Y = (1. / (DGAMMA( ALPHA) * (BETA**ALPHA) )) *DEXP( -X/BETA) * (X** (ALPHA—1. 
&))
BETA DISTRIBUTION.
ELSE IF (IDINT(VALUE(Ll,L2,l,3)) .EQ. 5) THEN
Y = (DGAMMA( ALPHA+BETA) /(DGAMMA(ALPHA) *DGAMMA(BETA) ) ) *
&(1./(10.‘SIZE)* *(ALPHA+BETA-2.))*
&((X-XINT(Ll,L2,1) ) **(ALPHA—1.))*
&((XINT(L1,L2,11)-X)**(BETA-1.))
END IF
IF (Y .LT. 0) Y = 0 
SUMX = SUMX+X 
SUMY = SUMY+Y 
SUMXY = SUMXY+(X*Y)
SUMSQ = SUMSQ+(X**2)
X =  X + X S IZ E  

5040 CONTINUE
VALUE(L1,L2,1,2) = (SUMXY-((SUMX*SUMY)/W))/(SUMSQ-((SUMX**2)/W)) 
VALUE(Ll,L2,I/1) = (SUMY/W)-(VALUE(Ll,L2,I,2)*(SUMX/W))

5050 CONTINUE
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DO 5060 CALCULATES THE AREA UNDER THE APPROXIMATED DISTRIBUTION. 
AN ADJUSTMENT FACTOR FOR THE AMOUNT THAT THIS AREA HAS BEEN 
UNDERESTIMATED OR OVERESTIMATED IS THEREBY DETERMINED.
DO 5060 I = 1,10
Q = XINT(Ll,L2,1+1)-XINT(Ll,L2,I)
Q1 - (XINT(Ll,L2,I)*VALUE(Ll,L2,1,2))+VALUE(Ll,L2,1,1)
Q2 = (XINT(Ll,L2,I+l)*VALUE(Ll,L2,I,2))+VALUE(Ll,L2,I,1)
IF (Q1 .LT. 0.) VALUE(Ll,L2,1,1) - VALUE(L1,L2,I,1)+(Ql*(-1.0))
IF (Q2 .LT. 0.) VALUE(Ll,L2,1,1) - VALUE(Ll,L2,I,l)+(Q2*(-1.0))
IF (Q1 .LT. 0.) Q1 = 0.
IF (Q2 .LT. 0.) Q2 = 0.
AREA = AREA+((Q1+Q2)*Q*0.5)

5060 CONTINUE
FACT = 1.0/AREA
DO 5070 ADJUSTS THE COEFFICIENTS OF ALL THE LINEAR POLYNOMIAL 
PIECES BY THE FACTOR COMPUTED IN DO 5060 IN ORDER TO NORMALIZE 
THE AREA BACK TO ONE. THIS ACTS TO REDUCE ACCUMULATING ERRORS 
DURING PROGRAM COMPUTATIONS.
DO 5070 I = 1,10
VALUE(Ll,L2,1,1) = VALUE(Ll,L2,1,1)‘FACT 
VALUE(Ll,L2,I,2) = VALUE(Ll,L2,I,2)*FACT 

5070 CONTINUE 
AREA = 0
DO 5080 I = 1,130 
A(I) = 0 
ZVAL(1,1) = 0 
ZVAL(1,2) = 0 
ZVAL(1,3) = 0 
ZVAL(1,4) = 0 

5080 CONTINUE 
RETURN 
END
END SUBROUTINE LINEAR

S U B R O U T I N E  S O R T

SUBROUTINE SORT (NCL)
REAL*8 A(130),B 
INTEGER NCL 
INTEGER I,K1 
COMMON/PARA3/A

SUBROUTINE SORT IS USED TO CONDUCT AN ALGEBRAIC SORT OF DATA 
CREATED IN THE SERIES AND PARA SUBROUTINES.

6000 K1 = 0
DO 6010 I = 1 ,NCL
IF ( (A (I) .LT. (A (I+1)+.01)) .AND.(A(I) .GT. (A(1+1)-.01)))
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&GO TO 6020 
IF (A(I) .LT. A(1+1)) GO TO 6010 
IF (A(I) .GT. A(1+1)) B = A(I)
A(I) = A(1+1)
A(1+1) = B 
Kl=Kl+l 

6010 CONTINUE
IF (Kl .GE. 1) GO TO 6000 
GO TO 6040 

6020 NCL = NCL-1
LASTJ - NCL+1 
DO 6030 J * I,LASTJ 
A( J) - A( J+l)
A(J+l) = 0 

6030 CONTINUE
GO TO 6000 

6040 RETURN 
END

C END SUBROUTINE SORT
CC ************************************************************

C
C S U B R O U T I N E  S I M U L C
CC ************************************************************

C
SUBROUTINE SIMULC (N,NSIM,NPATHS)
REAL*8 XINT(104,500,12),VALUE(104,500,10,3),
* T(100,99),TEARLY(IOO),TLATE(100),
* CRTAS(100,99),CRTNAS(100,99),CRTNS(100),PTHCRT(6)
REAL*8 ALPHA, BETA, X, XLNGTH, XLMBDA, XMAX, XMEAN, XMIN, XMODE ,
* RN, STD, TDIFF, TFLOAT, TMAX , TMIN , TTOTAL , CRTNNS, CUMCRT 
DIMENSION NET(100,103),IPRE(100,99,2),
* NCA(100,99),NOCP(100),NOCS(100),LPATH(6,101)
INTEGER I,IACT,ICOL,IENODE,IPRE,ISIM,ISNODE,ISTART,

* J,JJ,
* K,KOUNT,KTPATH,
* LASTP,LPATH,LSHIFT,
* N , NCA, NDIST, NET, NNPATH, NOCP, NOCS, NPATHS, NSIM 
COMMON/PARA1/XINT,VALUE
COMMON/PARA4/NET 
COMMON/PARA5/IPRE 
COMMON/PARA6/CRTAS,CRTNAS 
COMMON/PARA7/LPATH
EXTERNAL DRNUN , DRNNOR, DRNEXP, DRNGAM , DRNBET , RNSET

C
C SUBROUTINE SIMULC GENERATES NSIM MONTE CARLO SIMULATIONS OF THE
C NETWORK, APPROXIMATES THE CRITICALITY INDICES OF THE ACTIVITIES,
C AND IDENTIFIES THE TOP NPATHS CRITICAL PATHS.
C
C DO 7005 INITIALIZES THE NCA ARRAY. NCA(I,J) IS THE NUMBER OF
C TIMES THE Jth PREDECESSOR OF NODE I APPEARS ON A CRITICAL PATH.
C

DO 7005 I = 1,100 
DO 7000 J = 1,99 
NCA( I, J) = 0
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7000 CONTINUE 
7005 CONTINUE

DO 7180 GENERATES ACTIVITY RESOURCE CONSUMPTIONS (ACTIVITY TIMES) 
FOR EACH OF THE NSIM ITERATIONS OF THE MONTE CARLO SIMULATION OF
NETWORK AND COUNTS THE NUMBER OF TIMES EACH ACTIVITY APPEARS ON A
CRITICAL PATB.
DO 7180 ISIM = 1/NSIM
DO 7080 GENERATES A RANDOM VALUE FROM THE ACTIVITY RESOURCE 
CONSUMPTION (ACTIVITY TIME) DISTRIBUTION OF EACH ACTIVITY.
DO 7080 I = 1,N-1
DO 7070 J = 1,NET(I,103)
NDIST = IDINT(VALUE(I,J,1,3))
XMIN = XINT(I,J,1)
XMAX = XINT(I,J,11)
XLNGTH = XMAX-XMIN
GO TO (7010,7020,7030,7040,7050,7060) NDIST
TRIANGULAR DISTRIBUTION.

7010 CALL DRNUN(1,RN)
XMODE = VALUE(I,J,2,3)
X = (XMODE-XMIN)/XLNGTH 
IF (RN .GT. X) GO TO 7015
T(I,J) = XMIN+DSQRT(RN*XLNGTH*(XMODE-XMIN))
GO TO 7070

7015 T(I,J) = XMAX-DSQRT(XLNGTH*(XMAX-XMODE)*(1.-RN))
GO TO 7070
NORMAL DISTRIBUTION.

7020 CALL DRNNOR(1,RN)
XMEAN = VALUE(I,J,2,3)
STD = (XMEAN-XMIN)/3.
T(I,J) = (RN * STD)+XMEAN
IF ((T(I,J) .LT. XMIN) .OR. (T(I,J) .GT. XMAX)) GO TO 7020 
GO TO 7070
EXPONENTIAL DISTRIBUTION.

7030 CALL DRNEXP(1,RN)
XLMBDA = VALUE(I,J,2,3)-XMIN 
T(I,J) = (XLMBDA*RN)+XMIN 
IF (T(I,J) .GT. XMAX) GO TO 7030 
GO TO 7070
GAMMA DISTRIBUTION.

7040 ALPHA = VALUE(I,J,2,3)
BETA = VALUE(I,J,3,3)
CALL DRNGAM(1,ALPHA,RN)
T(I,J) = BETA*RN
IF (T(I,J) .GT. XMAX) GO TO 7040
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GO TO 7070
BETA DISTRIBUTION.

7050 ALPHA = VALUE(I, J,2,3)
BETA * VALUE(I,J,3,3)
CALL DRNBET(1,ALPHA,BETA,RN)
T (I,J ) = XMIN+(XLNGTH*RN)
GO TO 7070
UNIFORM DISTRIBUTION.

7060 CALL DRNUN(1,RN)
T (I,J ) = XMIN+(XLNGTH*RN)

7070 CONTINUE 
7080 CONTINUE

DO 7100 COMPUTES THE EARLIEST COMPLETION TIME OF EACH NODE 
TEARLY).

T E A R L Y (l)  =0.0 
DO 7110 I = 2,N 
TMAX =0.0
DO 7100 J = 1,NET(I,102)
ISNODE = IPRE(I,J,1)
IACT = IPRE(I,J,2)
TTOTAL = TEARLY( ISNODE)+T( ISNODE, IACT)
IF (TTOTAL .LE. TMAX) GO TO 7100 
TMAX = TTOTAL 

7100 CONTINUE
TEARLY(I) = TMAX 

7110 CONTINUE
DO 7120 INITIALIZES NOCP(I), THE NUMBER OF CRITICAL NODES PRECED
ING NODE I, AND NOCS(I), THE NUMBER OF CRITICAL NODES SUCCEEDING 
NODE I.
DO 7120 I = 1,N 
NOCP(I) = 0 
NOCS(I) = 0 

7120 CONTINUE
DO 7150 COMPUTES THE LATEST COMPLETION TIME OF EACH NODE (TLATE) .
TLATE(N) = TEARLY (N )
NOCS(N) = 1 
DO 7150 I = N-1,1,-1 
TMIN = 10000.ODO 
DO 7140 J = 1,NET(I,103)
IENODE = NET(I, J + l )
TDIFF = TLATE(IENODE)-T(I,J)
TFLOAT = TDIFF-TEARLY(I )
IF (DABS(TFLOAT) .LE. 0.01DO) GO TO 7130 
IF (TDIFF .LT. TMIN) TMIN = TDIFF 
GO TO 7140 

7130 NOCS(I) = NOCS(I)+NOCS(IENODE)
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TMIN * TDIFF 
7140 CONTINUE

TLATE(I ) = TMIN 
7150 CONTINUE

C
C DO 7180 DETERMINES THE NUMBER OF TIMES EACH ACTIVITY APPEARS ON A
C CRITICAL PATH (NCA).
C

NOCP(l) = 1
DO 7170 I = 2,N
DO 7160 J = 1,NET(1,102)
ISNODE = IPRE(I, J , 1)
IACT = IPRE(I,J,2)
TFLOAT = TLATE (I) — (TEARLY(ISNODE) +T(ISNODE, IACT) )
IF (DABS(TFLOAT) .GT. 0.01DO) GO TO 7160 
NCA(I,J) = NCA(I, J)+NOCS( I) *NOCP( ISNODE)
NOCP(I) - NOCP(I)+NOCP(ISNODE)

7160 CONTINUE 
7170 CONTINUE 
7180 CONTINUE

PRINT 7910 
PRINT 7915

C
C DO 7200 COMPUTES THE CRITICALITY INDICES OF THE PREDECESSOR
ACTIVI—
C TIES OF EACH NODE I (I = 2,...,N) (CRTAS).
C

DO 7200 I = 2,N 
DO 7190 J = 1,NET(I,102)
CRTAS(I, J) = DBLE (NCA( I, J) ) /DBLE(NSIM)

7190 CONTINUE 
7200 CONTINUE

C
C DO 7230 COMPUTES NORMALIZED CRITICALITY INDICES OF THE PREDECESSOR
C ACTIVITIES OF EACH NODE I (I = 2,...,N) (CRTNAS).
C

CUMCRT =0.0
DO 7210 J = 1,NET(N,102)
CUMCRT = CUMCRT+CRTAS ( N, J )

7210 CONTINUE
DO 7230 I = N,2,-1 
PRINT 7920,1 
PRINT 7925
DO 7220 J = 1,NET(I,102)
CRTNAS( I ,J )  = CRTAS (I , J ) /CUMCRT
PRINT 7930,IPRE(I, J, 1) ,NCA(I, J) ,CRTAS(I, J),CRTNAS(I, J)

7220 CONTINUE 
7230 CONTINUE

C
C DO 7260 COMPUTES THE CRITICALITY INDICES OF THE NODES (CRTNS).
C

DO 7240 I = 1,N 
CRTNS(I ) = 0 . 0  

7240 CONTINUE
C R T N S ( N ) =  C U M C R T  
DO 7260 I = 2,N
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DO 7250 J = 1,NET(I,102)
ISNODE = IPRE(I, J, 1)
CRTNS(ISNODE) = CRTNS(ISNODE)+CRTAS(I,J)

7250 CONTINUE 
7260 CONTINUE

C
C DO 7270 COMPUTES NORMALIZED CRITICALITY INDICES OF THE NODES
C (CRTNNS).
C

PRINT 7935 
DO 7270 I - 1,N 
CRTNNS = CRTNS(I)/CUMCRT 
PRINT 7940,I,CRTNS(I),CRTNNS 

7270 CONTINUE
C
C TO SUBROUTINE-END ENUMERATES ALL THE PATHS OF THE NETWORK WITH THE
C METHOD OF ASANO AND SATO (1985) AND IDENTIFIES THE TOP NPATHS
C CRITICAL PATHS.
C

DO 7290 I = 1,6 
DO 7280 J = 1,101 
LPATH (I, J ) = 0 

7280 CONTINUE 
7290 CONTINUE

C
C IDENTIFY A FIRST PATH AND LOAD IT INTO THE PATH ARRAY (LPATH) .
C [STARTING AT THE SOURCE NODE 1, TRACE THE POINTER fu( ) TO THE
FIRST
C SUCCESSOR OF EACH NODE, PERFORMING THE OPERATION v(i) = fs(v(i-l))
C FOR i  = 1,2,... UNTIL V ( i )  = TERMINAL NODE n. ]
C

LPATH(1,1) = 1 
KOUNT = 1 
DO 7300 J = 2,N 
ISNODE = LPATH(1,J-1)
LPATH(1,J) = NET(ISNODE, 2)
KOUNT = KOUNT+1
IF (LPATH(1,J ) .EQ. N) GO TO 7310 

7300 CONTINUE 
7310 LPATH(1,101) = KOUNT 

NNPATH = 1
C
C COMPUTE
C CRITICALITY INDEX OF THE FIRST PATH (PTHCRT)
C = AVERAGE OF THE CRITICALITY INDICES OF THE ACTIVITIES ON THE
PATH.
C

PTHCRT(1) =0.0
DO 7340 J = 2,LPATH(1,101)
ISNODE = LPATH(1,J-1)
IENODE = LPATH(1,J)
DO 7320 K = 1,NET(IENODE,102)
IF (IPRE(IENODE,K,l) .EQ. ISNODE) THEN 
IACT = K 
GO TO 7330 
ELSE
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GO TO 7320 
END IF 

7320 CONTINUE
7330 PTHCRT(1) = PTHCRT (1)+CRTAS (IENODE , IACT)
7340 CONTINUE

PTHCRT(1) = PTHCRT(1) /REAL(LPATH(1,101)—1)
C
C IDENTIFY A NEW PATH AND LOAD IT INTO THE TEMPORARY LOCATION IN THE
C PATH ARRAY (LPATH( 6,-) ) . [FIND THE LARGEST i SUCH THAT
C next(v(i),v(i+lj) IS NOT 0.]
C

LASTP = 1
7350 DO 7390 J = LPATH(LASTP, 101),2,-1 

ISNODE = LPATH(LASTP,J-l)
IENODE « LPATH(LASTP, J)
DO 7360 K = 2,NET(ISNODE,103)+l 
ICOL * K
IF (NET( ISNODE, ICOL) .EQ. IENODE) GO TO 7370 

7360 CONTINUE 
7370 ICOL = ICOL+1

IF (NET( ISNODE, ICOL) .NE. 0) THEN
DO 7380 JJ = 1,J-1
LPATH(6,JJ) = LPATH(LASTP,JJ)

7380 CONTINUE
LPATH(6,J) = NET(ISNODE,ICOL)
KOUNT = J
IF (LPATH(6,J) .EQ. N) GO TO 7420
GO TO 7400
ELSE
GO TO 7390 
END IF 

7390 CONTINUE
C
C [IF THERE EXISTS NO i SUCH THAT next(V(i),V(i+1)) IS NOT 0, THEN
ALL
C THE POSSIBLE PATHS HAVE BEEN ENUMERATED.]
C

RETURN
C
C [OTHERWISE, SET v(i+l) = next(v(i),V ( i+1)), AND THEN TRACE THE
POINT—
C ER £ b (  ) FROM V ( i + 1 )  TO THE TERMINAL NODE n  TO COMPLETE THE NEW
PATH. ]
C
7400 DO 7410 J = KOUNT+l,N 

ISNODE = LPATH(6,J-l)
LPATH ( 6 , J ) = NET (ISNODE, 2)
KOUNT = KOUNT+1
IF (LPATH( 6, J) .EQ. N) GO TO 7420 

7410 CONTINUE 
7420 LPATH(6,101) = KOUNT 

NNPATH = NNPATH+1 
LASTP = 6

C
C COMPUTE THE CRITICALITY INDEX OF THE NEW PATH (PTHCRT).
C
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PTHCRT(6) =0.0
DO 7450 J  = 2,LPATH(6,101)
ISNODE = LPATH(6,J-l)
IENODE = LPATH(6,J)
DO 7430 K = 1,NET(IENODE,102)
IF (IPRE(IENODE,K,l) .EQ. ISNODE) THEN 
IACT = K 
GO TO 7440 
ELSE
GO TO 7430 
END IF 

7430 CONTINUE
7440 PTHCRT(6) = PTHCRT(6)+CRTAS(IENODE,IACT)
7450 CONTINUE

PTHCRT(6) = PTHCRT(6)/REAL(LPATH(6,101)—1)
C
C INSERT THE NEW PATH INTO THE PATH ARRAY (LPATH) IN RANK ORDER OF
C DESCENDING MAGNITUDE OF CRITICALITY INDICES.
C

KTPATH = NNPATH-1
IF (NNPATH .GT. NPATHS) KTPATH = NPATHS 
IF (PTHCRT(6) .LE. PTHCRT(KTPATH)) THEN 
LSHIFT = 0
ELSE IF (PTHCRT(6) .GT. PTHCRT(l)) THEN
LSHIFT = 1
ELSE
DO 7460 I = 1,KTPATH-1
IF ((PTHCRT(I) .GE. PTHCRT(6)) .AND. (PTHCRT(6) .GT. PTHCRT(1+1))) 

‘LSHIFT = 1+1 
7460 CONTINUE 

END IF
C
C IF THE NEW PATH'S CRITICALITY INDEX IS < OR = MINIMUM OF THE
CRITI-
C CALITY INDICES OF THE PATHS IN THE PATH ARRAY AND THE PATH ARRAY
IS
C FULL, DISCARD THE NEW PATH.
C

IF ((LSHIFT .EQ. 0) .AND. (KTPATH .EQ. NPATHS)) GO TO 7350
C
C IF THE NEW PATH’S CRITICALITY INDEX IS < OR = MINIMUM OF THE
CRITI-
C CALITY INDICES OF THE PATHS IN THE PATH ARRAY AND THE PATH ARRAY
IS
C NOT FULL, ADD THE NEW PATH TO THE BOTTOM OF THE PATH ARRAY.
C

IF ((LSHIFT .EQ. 0) .AND. (KTPATH .LT. NPATHS)) GO TO 7470 
GO TO 7490 

7470 DO 7480 J  = 1,LPATH(6,101)
LPATH(KTPATH+1,J) = LPATH(6,J)

7480 CONTINUE
LPATH(KTPATH+1,101) = LPATH(6,101)
PTHCRT(KTPATH+1) = PTHCRT(6)
GO TO 7350

C
C OTHERWISE, SHIFT THE PATH ARRAY DOWN ONE PATH BEGINNING WITH PATH
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L S H IF T  AND IN S E R T  THE NEW PATH I N  P O S IT IO N  L S H I F T .

7490 ISTART “ MIN0(KTPATH+1,5)
DO 7510 I = ISTART/LSHIFT+l,-1 
DO 7500 J = 1,LPATH(1-1,101)
LPATH(I,J ) = LPATH(I—1,J)

7500 CONTINUE
L PA T H(I,101) = L P A T H (1-1,101)
PT H C R T ( I ) =  PT H C R T ( I —1 )

7510 CONTINUE
DO 7520 J - 1,LPATH(6,101)
L PA T H ( L S H I F T , J )  =  L P A T H ( 6 , J )

7520 CONTINUE
L P A T H ( L S H I F T ,101) = L PA T H ( 6 , 101)
P T H C R T (L S H IF T )  =  P T H C R T (6 )
GO TO 7350 

7910 FORMAT (1B1)
7915 FORMAT (IX,'FROM MONTE CARLO SIMULATION:')
7920 FORMAT (/ IX,'THE ACTIVITIES ENDING AT NODE ',13,' AND THEIR 

&'CRITICALITY INDICES ARE:')
7925 FORMAT (1X,10X, 'N O . T IM E S  O N',15X, 'N O R M A L IZ E D'/

& IX, 'S T A R T I N G ',3X, 'A  C R IT IC A L ',3X,’C R I T I C A L I T Y ',2X,
& 'C R I T I C A L I T Y '/
& IX, 2X, 'NODE ' , 8X, 'PATH', 9X, ' INDEX', 8X, 'INDEX' )

7930 FORMAT (IX,2X,13,8X,16,7X,F7.5,6X,F7.5)
7935 FORMAT (/ IX,'THE CRITICALITY INDICES OF THE NODES ARE:'/

& IX,23X,'NORMALIZED'/
& IX, 10X, 'CRITICALITY' ,2X, 'CRITICALITY'/
& IX,2X,'NODE’,7X,'INDEX',8X,'INDEX' )

7940 FORMAT (1X,2X,I3,7X,F7.5,6X,F7.5)
RETURN
END
END SU B R O U T IN E  SIM ULC

S U B R O U T I N E  G E N R A N

SUBROUTINE GENRAN (N, NACTS)
DIMENSION NET(100,103),NAF(99),NBE(99)
REAL*4 DEN,DL,DN,DN2, DN3,UP,X,Y,Y1
INTEGER I , I J  , J , K, KK, L, N, NI, NO, NN , NACTS, NARCS, NDEL, NDIFF, NFREE, NEM, 

& NRC
COMMON/ PARA4/NET 
EXTERNAL RNUN

THIS SUBROUTINE GENERATES A RANDOM ACYCLIC, DIRECTED ACTIVITY 
NETWORK WITH N NODES AND NACTS ACTIVITIES WITH THE METHOD OF 
DEMEULEMEESTER, DODIN AND HERROELEN (1993).

DO 8010 I  = 1,100 
DO 8000 J  = 1,103 
NET (I , J ) = 0 

8000 CONTINUE
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NET(If101) = 1 
8010 CONTINUE

COMPUTE NUMBER OF A C T I V I T I E S  TO D ELETE W ITH THE D E L E T IO N  METHOD.

L = N*(N-l)/2 
NDEL = L-NACTS
COMPUTE NDIFF SUCH THAT

INITIAL NUMBER OF FREE ACTIVITIES » NACTS - NDIFF 
FOR THE ADDITION METHOD.
NDIFF = (2*N)-4 
DN = REAL(N)
DL = ( R E A L ( L )/2 . 0 ) +1 . 0 
DN2 - DN*(DN-1.0)
DN3 = DN+0.5
IF [N(N-l)/4]+l < OR = NACTS, CHOOSE THE DELETION METHOD.
IF [N(N—l)/4]+l > NACTS, CHOOSE THE ADDITION METHOD.
IF (DL-NACTS) 8020,8020,8110
THE DELETION METHOD.

8020 DO 8040 I = 1,N-1 
NET(1,1) = I 
DO 8030 J = 1+1, N 
NET(I,J) = J 

8030 CONTINUE
NET(I,102) = 1-1 
NET(I,103) = N-I 

8040 CONTINUE
NET(N,1) = N 
NET(N,102) = N-l
DO 8100 DELETES NDEL RANDOMLY SELECTED ACTIVITIES.

8050 DO 8100 I = 1,NDEL
CHECK THAT THERE IS AT LEAST ONE ACTIVITY FEASIBLE FOR 
ACTIVITY DELETION. IF NOT, RESTART NETWORK GENERATION.
DO 8055 J = 1,N-1 
NO * J
IF (NET(NO,103) .LT. 2) GO TO 8055 
DO 8054 K = NO+1,N
IF (NET(K,102) .GE. 2 .AND. NET(NO,K) .EQ. K) GO TO 8060

8054 CONTINUE
8055 CONTINUE 

GO TO 8000
RANDOMLY SELECT THE STARTING NODE (NO) OF THE ACTIVITY TO BE 
DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.

8060 CALL RNUN(1, Y )
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Yl = (Y*DN2)+0.25 
X = DN3-SQRT(Y1)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
IF (NET(NO,103) .LT. 2) GO TO 8060
RANDOMLY SELECT THE ENDING NODE (NI) OF THE ACTIVITY TO BE 
DELETED FROM AMONG THE NODES FEASIBLE FOR ACTIVITY-DELETION.
K - 0
DO 8070 J = NO+1,N 
IF (NET(J,102) .LT. 2) GO TO 8070 
IF (NET(NO,J) .EQ. 0) GO TO 8070 
K = K+l 
NAF(K) = J 

8070 CONTINUE
IF (K .EQ. 0) GO TO 8060 
DEN = 1.0/REAL(K)
CALL RNUN( 1, X)
DO 8080 J  = 1,K 
UP = D E N * R E A L (J)
IF (X .GT. UP) GO TO 8080 
NI = NAF(J)
GO TO 8090 

8080 CONTINUE
DELETE THE ACTIVITY FROM NODE NO TO NODE NI.

8090 NET(NO,NI) = 0
NET(NO,103) = NET (NO,103)-1 
NET(NI, 102) = NET(NI,102)-l 

8100 CONTINUE
GO TO 8250

THE ADDITION METHOD.
8110 DO 8120 I = 1,N 

NET(1,1) = I 
8120 CONTINUE

INITIALIZE NUMBER OF NONRECEIVING NODES (NRC) AND NUMBER OF 
NONEMITTING NODES (NEM).
NRC = N-3 
NEM = N-3
ADD ACTIVITIES FROM NODE 1 TO NODE 2 AND FROM NODE N-l TO NODE
NET(1,2) = 2 
NET(N—1,N) = N 
NET(1,103) = 1 
NET(2,102) = 1 
NET(N—1,103) = 1 
NET(N,102) = 1
INITIALIZE NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) .
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NARCS = 2

IF INITIAL NUMBER OF FREE ACTIVITIES
[NACTS -  (2N-4) = NACTS -  NDIFF] IS < OR -  0,

THEN ALL NACTS ACTIVITIES TO BE ADDED ARE SUBJECT TO FEASIBILITY 
CONDITIONS AND CANNOT BE RANDOMLY SELECTED.

IF (NDIFF .GE. NACTS) GO TO 8170

SET FLAG (KK “ 0) THAT INITIAL NUMBER OF FREE ACTIVITIES IS > 0. 

KK = 0

RANDOMLY SELECT THE START NODE (NO) OF THE ACTIVITY TO BE ADDED 
FROM AMONG THE FEASIBLE NODES.

8130 CALL RNUN(1 ,Y)
Yl = (Y*DN2)+0.25 
X = DN3-SQRT(Y1)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NN = N-NO
IF (NET(NO,103) .GE. NN) GO TO 8130

RANDOMLY SELECT THE END NODE (NI) OF THE ACTIVITY TO BE ADDED 
FROM AMONG THE FEASIBLE NODES.

K = 0
DO 8140 J  = NO+1,N 
IF (NET(NO,J) .NE. 0) GO TO 8140 
K = K+l 
NAF(K) = J  

8140 CONTINUE
DEN = 1 .0/REAL(K)
CALL RNUN( 1, X)
UP = 0.0 
DO 8150 J  = 1,K 
UP * UP+DEN
IF (X .GT. UP) GO TO 8150 
NI * NAF(J)
GO TO 8160 

8150 CONTINUE

ADD THE ACTIVITY FROM NODE NO TO NODE NI.

8160 NET(N0,NI) * NI 
NARCS = NARCS+1
IF (NET(NO,103) .EQ. 0) NEM = NEM-1 
IF (NET(NI,102) .EQ. 0) NRC = NRC-1 
NET(NO,103) = NET(NO,103)+1 
NET(NI,102) = NET(NI,102)+1

IF
NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS > OR =
NUMBER OF ACTIVITIES REQUIRED (NACTS),
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THEN THE NETWORK IS COMPLETE.
IF (NARCS .GE. NACTS) GO TO 8250

IF THE FLAG (KK) INDICATES THAT
NUMBER OF NONRECEIVING NODES (NRC) “ 0, AND 
NUMBER OF NONEMITTING NODES (NEM) -  0, I .E .

FEASIBILITY REQUIREMENTS ARE MET, THEN THE REMAINING ACTIVITIES 
TO BE ADDED ARE FREE ACTIVITIES AND ARE TO BE RANDOMLY SELECTED.

IF (KK .EQ. 1) GO TO 8130

IF
NUMBER OF FREE ACTIVITIES (NFREE) IS > 0,

THEN THE NEXT ACTIVITY TO BE ADDED IS A FREE ACTIVITY AND IS TO BE 
RANDOMLY SELECTED.

NFREE = NACTS-NARCS-NRC-NEM 
IF (NFREE .GT. 0) GO TO 8130

IF
NUMBER OF FREE ACTIVITIES (NFREE) = 0, AND 
NUMBER OF NONRECEIVING NODES (NRC) = 0,

THEN CHECK THE NUMBER OF NONEMITTING NODES (NEM).

8170 IF (NRC .EQ. 0) GO TO 8200

IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONRECEIVING 
NODES (NRC) TO 0.

K = 0
DO 8180 I = 3,N-1 
IF (NET(I,102) .GT. 0) GO TO 8180 
K = K+l 
NAF(K) = I 

8180 CONTINUE
IF (K .EQ. 0) GO TO 8200 
DO 8190 I =1,K 
IJ  » K+l-I 
NI = NAF(IJ)
CALL RNUN(1 ,Y)
X = 1.0+(REAL(NI-1)*Y)
NO = INT(X)
IF (NO .GT. X) NO = NO-1 
NET(NO,NI) = NI 
NARCS = NARCS+1 
NET(NO,103) = NET(NO,103)+1 
NET(NI,102) = NET(NI,102)+l 

8190 CONTINUE

IF
NUMBER OF NONEMITTING NODES (NEM) = 0,

THEN THE FEASIBILITY REQUIREMENTS ARE MET.

8200 IF (NEM .EQ. 0) GO TO 8230
C
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C IF NOT, ADD ACTIVITIES SO AS TO REDUCE THE NUMBER OF NONEMITTING
C NODES (NEM) TO 0.
C

K =  0
DO 8210 I = 2,N-2 
IF (NET(I,103) .GT. 0) GO TO 8210 
K « K+l 
NBE(K) = I 

8210 CONTINUE
IF (K .EQ. 0) GO TO 8230 
DO 8220 I * 1,K 
NO = NBE(I)
CALL RNUN(1 ,X)
Y = REAL(NO+l)+(REAL(N-NO)*X)
NI » INT(Y)
IF (NI .GT. Y) NI = NI-1 
NET(NO,NI) = NI 
NARCS = NARCS+1 
NET(NO,103) = NET(NO,103)+l 
NET(NI,102) * NET(NI,102)+1 

8220 CONTINUE
C
C SET FLAG (KK = 1) THAT FEASIBILITY REQUIREMENTS HAVE BEEN MET.
C

8230 KK = 1
C
C IF NUMBER OF ACTIVITIES ADDED SO FAR (NARCS) IS
C < NUMBER OF ACTIVITIES REQUIRED (NACTS), THEN RANDOMLY SELECT
C THE NEXT ACTIVITY TO BE ADDED,
C = NACTS, THEN THE NETWORK IS COMPLETE,
C > NACTS, THEN USE THE DELETION METHOD TO DELETE EXCESS
C ACTIVITIES.
C

IF (NARCS-NACTS) 8130,8250,8240 
8240 NDEL = NARCS-NACTS 

GO TO 8050
C
C RECONFIGURE NET ARRAY.
C

8250 DO 8270 I = 1,N-1 
K = 2
DO 8260 J  = 1+1,N
IF (NET(I,J) .EQ. 0) GO TO 8260
NET(I,K) = NET(I,J)
IF (K .LT. J) NET(I,J) = 0 
K = K+l 

8260 CONTINUE 
8270 CONTINUE 

RETURN 
END

C END SUBROUTINE GENRAN
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C S U B R O U T I N E  C O M P A R
C
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SUBROUTINE COMPAR(Ll,L2,L3,L4,PR1GE2)
REAL*8 XINT(104,500,12),VALUE(104,500,10,3 ),

* BOX, BIX, BOY, B1Y, Cl, C2,C3,C4, CELL, PR1GE2, VOLUME
* XLOWER, XUPPER, YLOWER, YUPPER 
INTEGER I,J,L1,L2,L3,L4
COMMON/ PARAl/XINT, VALUE

SUBROUTINE COMPAR COMPUTES P(X > OR = Y), WHERE X IS THE DISTRIBU
TION OF NODE LI, ACTIVITY L2, AND Y IS THE DISTRIBUTION OF NODE

t
ACTIVITY L4.

IF Y(11) < OR -  X (l), THEN P(X > OR -  Y) -  1. RETURN PR1GE2 -

IF (XINT(L3,L4,11) .LE. XINT(Ll,L2,1 ))  THEN
PR1GE2 = 1 .0
RETURN

IF X (ll) < OR = Y(1), THEN P(X > OR = Y) = 0. RETURN PRIGE2 =

ELSE IF (XINT(L I, L2,11) .LE. XINT(L3,L4,1) ) THEN 
PR1GE2 = 0 . 0  
RETURN 
END IF

INITIALIZE P(X > OR = Y) [PR1GE2] .

PR1GE2 = 0 . 0

DO 9010 COMPUTES THE CONTRIBUTION TO P(X > OR = Y) IN EACH CELL 
[X(I) ,X(I+1) J X [Y( J) ,Y( J+ l) ] OF THE JOINT DISTRIBUTION OF X AND Y 
AND SUMS THESE CONTRIBUTIONS IN PR1GE2.

DO 9010 I = 1,10 
DO 9000 J  = 1,10

IF X(I+1) < OR = Y( J ) , THE CELL LIES COMPLETELY ABOVE THE LINE X =

SO THE CELL'S CONTRIBUTION TO P(X > OR = Y) IS 0.

IF (XINT(L1,L2,I+1) .LE. XINT(L3,L4,J)) GO TO 9000 
BOX = VALUE(LI,L2,1 ,1 )
BIX = VALUE(L1,L2,I,2)
BOY = VALUE(L3,L4,J,1)
BlY = VALUE(L3,L4,J,2)
XLOWER = XINT(L l, L2, I )
XUPPER = XINT(L l, L2,1+1)
YLOWER = XINT(L3,L4,J)
YUPPER = XINT(L3,L4,J+l)

IF Y(J + l ) < OR = X (I), THE CELL LIES COMPLETELY BELOW THE LINE X =
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IF (YUPPER .LE. XLOWER) THEN
CELL = (BOX*(XUPPER-XLOWER)+(B1X/2.0)*(XUPPER**2-XLOWER**2))

* *(BOY*(YUPPER-YLOWER) + (B1Y/2.0)*(YUPPER**2-YLOWER**2)) 
PR1GE2 = FR1GE2+CELL
GO TO 9000 
ELSE
Cl = -(BOX* (BOY*YLOWER+(BlY/2.0) *YLOWER**2) )
C2 = (B0X*B0Y/2.0 )—(B1X/2.0 )* (BOY*YLOWER+(BlY/2.0 )*YLOWER**2)
C3 -  (BlX*B0Y/3.0)+(B0X*BlY/6.0)
C4 =* BlX*BlY/8 .0 
END IF

IF Y( J) < X(I) < Y (J + l) < X(I+1), THE LINE X * Y PASSES THROUGH 

LEFT SIDE AND THE TOP OF THE CELL.

IF ((YLOWER .LT. XLOWER) .AND. (XLOWER. LT. YUPPER) .AND.
* (YUPPER .LT. XUPPER)) THEN 
CELL = Cl *(YUPPER—XLOWER)

* +C2 *(YUPPER* * 2-XLOWER* * 2)
* +C3*(YUPPER**3-XLOWER**3)
* +C4*(YUPPER**4-XLOWER**4)
* + (BOX* ( XUPPER-YUPPER ) + (BlX/2.0)*( XUPPER* * 2-YUPPER* * 2 ) )
* *(BOY*(YUPPER-YLOWER) + (B1Y/2.0 )* (YUPPER* *2-YLOWER* *2)) 
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF X(I) < OR = Y(J) AND Y(J+1) < X(I+1),THE LINE X = Y PASSES
THROUGH THE BOTTOM AND THE TOP OF THE CELL.

ELSE IF ((XLOWER .LE. YLOWER) .AND. (YUPPER .LT. XUPPER)) THEN 
CELL = Cl*(YUPPER-YLOWER)

* +C2*(YUPPER**2-YLOWER**2)
* +C3*(YUPPER**3-YLOWER**3)
* +C4*(YUPPER**4-YLOWER**4)
* +(BOX*( XUPPER-YUPPER) + (BlX/2.0)*(XUPPER* * 2-YUPPER* * 2))
* *(BOY*(YUPPER-YLOWER) + (B1Y/2.0 )* (YUPPER* *2-YLOWER* *2)) 
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF X(I) < OR = Y(J) < X(I+1) < OR = Y(J + l), THE LINE X = Y PASSES 
THROUGH THE BOTTOM AND THE RIGHT SIDE OF THE CELL OR THROUGH THE 
LOWER-LEFT AND UPPER-RIGHT CORNERS OF THE CELL.

ELSE IF ((XLOWER .LE. YLOWER) .AND. (YLOWER .LT. XUPPER) = AND.
* (XUPPER .LE. YUPPER)) THEN
CELL = Cl*(XUPPER-YLOWER)

* +C2*(XUPPER**2-YLOWER**2)
* +C3*(XUPPER**3-YLOWER**3)
* +C4*(XUPPER**4-YLOWER**4)
PR1GE2 = PR1GE2+CELL
GO TO 9000

IF Y(J) < X(I) AND X(I+1) < Y(J+l), THE LINE X = Y PASSES THROUGH 
BOTH SIDES OF THE CELL.
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c
ELSE IF ((YLOWER .LT. XLOWER) .AND. (XUPPER .LT. YUPPER)) THEN 
CELL = C l*(XUPPER-XLOWER)

* +C2*(XUPPER**2-XLOWER**2)
* +C3* ( XUPPER* *3—XLOWER* *3)
* +C4*(XUPPER*‘4-XLOWER**4)
PR1GE2 = PR1GE2+CELL
GO TO 9000 
END IF 

9000 CONTINUE 
9010 CONTINUE

C
C DO 9030 COMPUTES THE VOLUME UNDER THE APPROXIMATED JOINT DISTRIBU-
C TION OF X AND Y. AN ADJUSTMENT FOR THE AMOUNT THAT THIS VOLUME
C HAS BEEN UNDERESTIMATED OR OVERESTIMATED IS THEN MADE TO PR1GE2.
C

VOLUME = 0 . 0  
DO 9030 I  = 1,10 
DO 9020 J  = 1,10 
BOX = VALUE(L l,L2,1 ,1 )
BIX = VALUE(L l,L2,1 ,2 )
BOY = VALUE(L3,L4, J ,1)
BlY = VALUE(L3,L4,J,2)
XLOWER = XINT(L l, L2, 1)
XUPPER = XINT(Ll,L2,1+1)
YLOWER = XINT(L3,L4,J)
YUPPER = XINT(L3,L4,J+l)
CELL = (BOX*(XUPPER-XLOWER)+(B1X/2.0)*(XUPPER**2-XLOWER**2))

* *(BOY*(YUPPER-YLOWER) + (B1Y/2.0 )* (YUPPER* *2-YLOWER* *2)) 
VOLUME = VOLUME+CELL

9020 CONTINUE 
9030 CONTINUE

PR1GE2 = PR1GE2/VOLUME
RETURN
END

C END SUBROUTINE COMPAR
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
C S U B R O U T I N E  D O M P T H
C
C  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
SUBROUTINE DOMPTH(N,NPATHS)
REAL*8 XINT(104,500,12),VALUE(104,500,10,3),

* PR1GE2
DIMENSION NET(100,103),IPRE(100,99 ,2),NPA(500,101),

* NPPA(1 0 0 ,5 ),INP(500),NP(5 ) ,NPP(100),NPKl(500),
* NPK2(500),NPR1(5)

INTEGER I , IACT,INP,ISLAST,ISNODE, ISNODl, ISNOD2,
* J , J J , J l , J 2 , J 3 ,
* K,KK,
* N, NET,NNN,NOPAT, NP,NPA,NPATHS, NPK, NPK1,NPK2, NPP, NPPA,
* NPRl,NSS 
COMMON/PARAl/XINT,VALUE 
COMMON/PARA4/NET
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c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

COMMON/PARA5/ IPRE 
COMMON/ PARA 8/NPA,NPPA

SUBROUTINE DOMPTH DETERMINES THE K MOST STOCHASTICALLY DOMINATING 
PATHS IN THE NETWORK. THE FOLLOWING ARRAYS AND VARIABLES ARE USED 
IN THIS SUBROUTINE:

NOPAT
NPATHS

NPK
NP(K)

NPA(I, J) 
NPP(I) 
NPPA(I,J)

NPKl(K)

NPK2(K)

NPR1(K)

NUMBER OF PATHS IN THE MAIN PATH LIST 
DESIRED NUMBER OF PATHS IN THE SET OF K MOST 

STOCHASTICALLY DOMINATING PATHS (MAXIMUM 5)
NUMBER OF CANDIDATE PATHS THROUGH NODE I 
RANK IN THE MAIN PATH LIST OF THE Kth MOST

STOCHASTICALLY DOMINATING PATH ENDING AT NODE I 
NODES FORMING THE I th  RANK PATH IN THE MAIN PATH LIST 
NUMBER OF DOMINATING PATHS ENDING AT NODE I 
RANK IN THE MAIN PATH LIST OF THE J th  MOST DOMINATING 

PATH ENDING AT NODE I 
RANK IN THE MAIN PATH LIST OF THE Kth CANDIDATE PATH 

ENDING AT NODE I 
NUMBER OF THE PREDECESSOR NODE TO NODE I OF THE Kth 

CANDIDATE PATH ENDING AT NODE I 
RANK OF THE Kth MOST DOMINATING PATH AMONG THE

CANDIDATE
C PATHS ENDING AT NODE I 

INDICATOR OF PATH J  IN THE MAIN PATH LIST
= 1 IF  PATH J  IS AMONG THE K MOST DOMINATING PATHS

C INP(J)
C
AT 
C 
C 
C
FURTHER 
C
C THE DISTRIBUTIONS OF
THROUGH
C EACH NODE IN THE MAIN PATH LIST ARE IN XINT( 104,1 TO 500,-)
TOGETHER

WITH VALUE(104,1 TO 5 0 0 ,- ,- ) .  THE DISTRIBUTIONS OF THE CANDIDATE 
PATHS AT NODE I ARE IN XINT(103,1 TO 5 0 0 ,-) , VALUE(103,1 TO 500,-

A PREDECESSOR NODE TO NODE I
WHEN PATH J  IS DETERMINED TO BE ONE OF THE K 
MOST DOMINATING PATHS AND IS REMOVED FROM

CONSIDERATION AT NODE I
THE K MOST STOCHASTICALLY DOMINATING PATHS

C
C
, -)
C

DO 9110 I  = 1,500 
DO 9100 J  = 1,10 
XINT(103,I , J )  = 0.0 
XINT(104,I , J )  = 0.0 
VALUE(103,I,J,1) = 0.0 
VALUE(103 ,I , J , 2) = 0.0 
VALUE(104,I,J,l) * 0.0 
VALUE(104,I,J,2) = 0.0 

9100 CONTINUE
XINT(103,I , 11) = 0.0 
XINT(104,1,11) = 0.0 

9110 CONTINUE
C
C
C

INITIALIZE THE MAIN PATH LIST AT THE STARTING NODE.

NOPAT = 1 
NPP(l) = 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

465

NPPA(1,1) = 1 
INP(l) = 1 
NPA(1,1) = 1 
NPA(1,2) =* 1

C
C DO 9250 DETERMINES THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C EACH NODE.
C

DO 9250 I = 2,N 
NNN = NPATHS 
NPK = 0

C
C DO 9160 DETERMINES THE DISTRIBUTIONS OF THE (NO. OF PREDECESSORS
OF
C NODE I ) *NPATHS CANDIDATE PATHS AT NODE I .
C

DO 9160 J  = 1,NET(I,102)
ISNODE = IPRE(I , J ,  1)
IACT = IPRE(I , J , 2)

C
C LOAD THE DISTRIBUTION OF THE ACTIVITY FROM NODE ISNODE TO NODE I
C INTO TEMPORARY LOCATION 1.
C

DO 9120 KK = 1,10
XINT(101,1,KK) = XINT(ISNODE,IACT, KK)
VALUE(101,1,KK,1) = VALUE(ISNODE,IACT,KK,1)
VALUE(101,1 ,KK,2) = VALUE(ISNODE,IACT,KK,2)

9120 CONTINUE
XINT(101,1,11) = XINT(ISNODE, IACT,11)
DO 9150 K = 1,NPP(ISNODE)
NSS = NPPA(ISNODE,K)
NPK = NPK+1

C
C LOAD THE DISTRIBUTION OF THE RANK NSS PATH THROUGH NODE ISNODE IN 
THE
C MAIN PATH LIST INTO THE DISTRIBUTION OF THE RANK NPK PATH THROUGH
C NODE I IN THE CANDIDATE PATH LIST.
C

DO 9130 KK = 1,10
XINT(103,NPK,KK) = XINT(104,NSS,KK)
VALUE (103,NPK,KK,1) = VALUE(104,NSS,KK,1)
VALUE(103,NPK,KK,2) = VALUE(104,NSS,KK,2)

9130 CONTINUE
XINT(103,NPK,11) = XINT(104,NSS,11)

C
C CONVOLVE THE DISTRIBUTION OF THE RANK NSS PATH THROUGH NODE ISNODE
C IN THE MAIN PATH LIST AND ACTIVITY IACT AND PLACE THE CONVOLUTION
IN
C THE DISTRIBUTION OF THE RANK NPK PATH THROUGH NODE I IN THE MAIN
C PATH LIST.
C

IF (ISNODE .EQ. 1) THEN
DO 9140 KK = 1,10
XINT(103,NPK,KK) = XINT(101,1,KK)
VALUE(103,NPK,KK,1) = VALUE(101,1 ,KK,1)
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VALUE(103,NPK,KK,2) = VALUE(101,1,KK,2)
9140 CONTINUE

XINT(103,NPK,11) = XINT(101,1,11)
ELSE
CALL SERIES(103,NPK,101,1)
END IF
NPKl(NPK) = NSS 
NPK2(NPK) = ISNODE 

9150 CONTINUE 
9160 CONTINUE

IF (NPK .LT. NPATHS) NNN = NPK
C
C DO 9210 DETERMINES THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C NODE I  FROM AMONG THE NPK CANDIDATE PATHS.
C

DO 9210 K = 1,NNN 
ISN0D2 = 0 
J = 1

C
C THE J th  CANDIDATE PATH IS DESIGNATED THE CONTENDER FOR THE Kth
MOST
C STOCHASTICALLY DOMINATING PATH THROUGH NODE I .
C

9170 J2 = J
J l  = NPKl(J)

C
C IF THE J th  CANDIDATE PATH IS ONE OF THE K MOST STOCHASTICALLY
DOMI—
C NATING PATHS THROUGH NODE I WHICH HAVE ALREADY BEEN DETERMINED
C [INP(NPK1(J)) = 0 ] ,  IT IS NOT FURTHER CONSIDERED.
C

IF (INP(Jl).EQ. 0) GO TO 9190 
NP(K) = J l  
NPR1(K) = J 
ISN0D1 = NPK2(J)

C
C THE J2 th  CANDIDATE PATH IS TESTED AGAINST THE J th  CANDIDATE PATH.
C

9180 J2 = J2+1
C
C IF J2 > NPK, THE J th  CANDIDATE PATH IS THE Kth MOST STOCHASTICALLY
C DOMINATING PATH THROUGH NODE I .
C

IF (J2 .GT. NPK) GO TO 9200 
J3 = NPK1(J 2 )

C
C IF THE J2 th  CANDIDATE PATH IS ONE OF THE K MOST STOCHASTICALLY
DOMI—
C NATING PATHS THROUGH NODE I WHICH HAVE ALREADY BEEN DETERMINED
C [INP(NPK1(J 2 )) = 0 ] ,  IT IS NOT FURTHER CONSIDERED.
C

IF (INP(J3) .EQ. 0) GO TO 9180 
ISLAST = ISNOD2 
ISNOD2 = NPK2(J 2 )
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c
C IF THE J th  AND J2 th  CANDIDATE PATHS HAVE THE SANE PREDECESSOR NODE 
TO
C NODE I ,  THE J2th  CANDIDATE PATH IS NOT FURTHER CONSIDERED, SINCE
THE
C K MOST STOCHASTICALLY DOMINATING PATHS THROUGH THAT PREDECESSOR
NODE
C ARE RANK-ORDERED, AND THE J th  PATH STOCHASTICALLY DOMINATES THE
J2th
C PATH. IF THE J2 th  AND THE ( J 2 - l) th  CANDIDATE PATHS HAVE THE SAME
PRE-
C DECESSOR NODE TO NODE I ,  THE J2 th  CANDIDATE PATH IS AGAIN NOT
FURTHER
C CONSIDERED, SINCE THE K MOST STOCHASTICALLY DOMINATING PATHS
THROUGH
C THAT PREDECESSOR NODE ARE RANK-ORDERED, AND THE ( J 2 - l ) th  PATH
STOCHAS-
C TICALLY DOMINATES THE J2 th  PATH, AND HENCE THE J th  PATH, WHICH
STO-
C CASTICALLY DOMINATES THE ( J 2 - l) th  PATH, STOCHASTICALLY DOMINATES
THE
C J2 th  PATH BY TRANSITIVITY.
C

IF ( ( ISNOD2 .EQ. ISNODl) .OR. (ISNOD2 .EQ. ISLAST)) GO TO 9180
C
C COMPUTE THE PROBABILITY THAT THE J th  CANDIDATE PATH STOCHASTICALLY
C DOMINATES (DOMINATES IN PROBABILITY) THE J2th CANDIDATE PATH, I.E .
C P(DISTRIBUTION OF J th  PATH DURATION > OR = DISTRIBUTION OF J2th
PATH
C DURATION).
C

CALL COMPAR(103,J , 103,J2,PR1GE2)
C
C IF THE J th  CANDIDATE PATH STOCHASTICALLY DOMINATES THE J2 th
CANDIDATE
C PATH, THE J th  CANDIDATE PATH REMAINS THE CONTENDER FOR THE Kth
MOST
C STOCHASTICALLY DOMINATING PATH THROUGH NODE I ,  AND THE (J2 + l)th
CANDI-
C DATE PATH IS TESTED NEXT.
C

IF (PR1GE2 .GE. 0 .5) GO TO 9180
C
C IF THE J2th  CANDIDATE PATH STOCHASTICALLY DOMINATES THE J th
CANDIDATE
C PATH, THE J2th  CANDIDATE PATH IS DESIGNATED THE CONTENDER FOR THE
Kth
C MOST STOCHASTICALLY DOMINATING PATH THROUGH NODE I ,  AND THE
(J2+ l)th
C CANDIDATE IS TESTED NEXT AGAINST THE CONTENDER.
C

NP(K) = J3 
NPRl(K) = J2 
J = J2
ISNODl = ISNOD2 
GO TO 9180
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9190 J  = J+ l
IF (J  .LE. NPK) GO TO 9170

C
C WHEN THE Kth MOST STOCHASTICALLY DOMINATING PATH HAS BEEN
DETERMINED,
C SET THE INDICATOR OF ITS PATH NUMBER IN THE MAIN PATH LIST = 0, SO
C THAT THE PATH IS NOT FURTHER CONSIDERED AT NODE I .
C

9200 INP(NP(K)) -  0 
9210 CONTINUE

C
C DO 9240 UPDATES THE MAIN PATH LIST AND PATH PARAMETERS.
C

NPP(I) = NNN 
DO 9240 K “ 1,NNN

C
C THE J th  PATH IN THE MAIN PATH LIST WAS THE Kth MOST STOCHASTICALLY
C DOMINATING PATH ENDING AT NODE I .  RESET THE INDICATOR OF THIS
PATH = 1.
C

J  = NP(K)
INP(J) = 1

C
C THE Kth MOST STOCHASTICALLY DOMINATING PATH ENDING AT NODE I  IS
NOW THE
C (NOPAT+K)th  PATH IN THE MAIN PATH LIST. SET THE INDICATOR OF THIS
C PATH = 1.
C

J J  = NOPAT+K 
INP(JJ) = 1

C
C LOAD THIS PATH RANK INTO NPPA(I,K).
C

NPPA(I ,K) = J J
C
C LOAD THE NODES OF THIS PATH INTO THE NPA ARRAY. NPA(I,1) IS THE
LENGTH
C OF THE I th  PATH IN THE MAIN PATH LIST.
C

NPA(JJ,1) = NPA(J,1)+l 
NPA(JJ,NPA(J,1)+2) = I 
DO 9220 KK = 2 ,NPA(J,1)+1 
NPA(JJ,KK) = NPA(J,KK)

9220 CONTINUE
C
C THE DISTRIBUTION OF THE Kth MOST STOCHASTICALLY DOMINATING PATH
ENDING
C AT NODE I IS THE DISTRIBUTION OF THE NPRl (K)th CANDIDATE PATH.
LOAD
C THIS DISTRIBUTION INTO THE DISTRIBUTION OF THE (NOPAT+K)th PATH IN
THE
C MAIN PATH LIST.
C

J l  = NPR1(K)
DO 9230 KK = 1,10
XINT(104,JJ,KK) = XINT(103,Jl,KK)
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V A LU E(104,JJ,KK,1) = V A LU E(103,J1,KK,1)
VALUE(104,JJ,K K ,2) = VALUE(103,Jl,KK,2)

9230 CONTINUE
XINT(104,J J , 11) -  X IN T(103,Jl,ll)

9240 CONTINUE

THE NUMBER OF PATHS IN THE MAIN PATH LIST IS NOW NOPAT+NNN.

NOPAT = NOPAT+NNN 
9250 CONTINUE

PRINT 9270 
PRINT 9280,NPATHS 
DO 9260 K = 1 ,NPATHS 
J J  -  NPPA(N,K)
PRINT 9290,K,NPA( J J , 1), (NPA( JJ,KK) ,KK -  2 ,NPA( J J ,  1)+1)

9260 CONTINUE 
9270 FORMAT (1H1)
9280 FORMAT (IX ,’THE ' ,1 1 , '  MOST STOCHASTICALLY DOMINATING PATHS ' 

* 'THROUGH THE NETWORK ARE:')
9290 FORMAT ( /  IX, 'THE RANK ’ ,1 1 , ’ PATH WITH ' , 1 3 , '  NODES:' /

*(IX ,2014 / ) )
RETURN
END
END SUBROUTINE DOMPTH

S U B R O U T I N E C P U T I  M E

SUBROUTINE CPUTIME(CPTIME)
REAL*4 CPTIME
TYPE TB_TYPE

SEQUENCE
REAL*4 USRTIME
REAL*4 SYSTIME

END TYPE
TYPE (TB_TYPE) DTIME_SRC
CPTIME = DTIME (DTIME SRC)
RETURN
END
END SUBROUTINE CPUTIME

S U B R O U T I N E T I M E R

SUBROUTINE TIMER(DELTA)
REAL*4 DELTA,CPU2
CALL CPUTIME(CPU2)
DELTA = CPU2
RETURN
END
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C END SUBROUTINE TIMER
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